您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 二次函数动点问题专题
学习目标:1.进一步理解一次函数、二次函数、反比例函数的概念、图象和性质,掌握根据具体条件判断函数类型,列出函数关系式的方法;2.能够从已知条件和函数图象中获取相关信息,结合几何图形之间的位置关系,“以形析数,以数释形”,根据数与形的相互转化来建立方程或不等式,提高解决函数综合问题的能力。动点问题专题(1)如图,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,则∠AOB=,用m表示点A′的坐标:A′(,);(一)目标引入xyD'A'DACOB(2)已知抛物线C1:y=ax2+bx+(a≠0)经过点A(﹣1,0)和B(3,0).则抛物线C1的解析式为,其顶点C的坐标为。(二)经典题例例(2015•宜昌)如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E,A′两点.(1)填空:∠AOB=,用m表示点A′的坐标:A′(,);(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且=时,△D′OE与△ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:①求a,b,m满足的关系式;②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.(三)尝试训练几何画板文件动点问题专题.gsp
本文标题:二次函数动点问题专题
链接地址:https://www.777doc.com/doc-4068488 .html