您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 常见的图像特征提取与描述方法如颜色特征纹理特征和
本章重点:图像特征及特征提取的基本概念。常见的图像特征提取与描述方法,如颜色特征、纹理特征和几何形状特征提取与描述方法。第8章图像特征提取与分析8.1基本概念8.2颜色特征描述8.3形状特征描述8.4图像的纹理分析技术8.5小结8.1基本概念目的让计算机具有认识或者识别图像的能力,即图像识别。特征选择是图像识别中的一个关键问题。特征选择和提取的基本任务是如何从众多特征中找出最有效的特征。特征形成根据待识别的图像,通过计算产生一组原始特征,称之为特征形成。特征提取原始特征的数量很大,或者说原始样本处于一个高维空间中,通过映射或变换的方法可以将高维空间中的特征描述用低维空间的特征来描述,这个过程就叫特征提取。特征选择从一组特征中挑选出一些最有效的特征以达到降低特征空间维数的目的,这个过程就叫特征选择。选取的特征应具有如下特点:可区别性可靠性独立性好数量少8.2颜色特征描述8.2.1颜色矩8.2.2颜色直方图8.2.3颜色集8.2.4颜色相关矢量8.2.1颜色矩颜色矩是以数学方法为基础的,通过计算矩来描述颜色的分布。颜色矩通常直接在RGB空间计算颜色分布的前三阶矩表示为:8.2.2颜色直方图设一幅图像包含M个像素,图像的颜色空间被量化成N个不同颜色。颜色直方图H定义为:(8-4)为第i种颜色在整幅图像中具有的像素数。归一化为:(8-5)ih由于RGB颜色空间与人的视觉不一致,可将RGB空间转换到视觉一致性空间。除了转换到前面提及的HSI空间外,还可以采用一种更简单的颜色空间:这里,max=255。彩色图像变换成灰度图像的公式为:其中R,G,B为彩色图像的三个分量,g为转换后的灰度值。8.2.3颜色集颜色直方图和颜色矩只是考虑了图像颜色的整体分布,不涉及位置信息。颜色集表示则同时考虑了颜色空间的选择和颜色空间的划分使用颜色集表示颜色信息时,通常采用颜色空间HSL定义:设BM是M维的二值空间,在BM空间的每个轴对应唯一的索引m。一个颜色集就是BM二值空间中的一个二维矢量,它对应着对颜色{m}的选择,即颜色m出现时,c[m]=1,否则,c[m]=0。实现步骤:对于RGB空间中任意图像,它的每个像素可以表示为一个矢量。变换T将其变换到另一与人视觉一致的颜色空间,即。采用量化器QM对重新量化,使得视觉上明显不同的颜色对应着不同的颜色集,并将颜色集映射成索引m。颜色集可以通过对颜色直方图设置阈值直接生成,如对于一颜色m,给定阈值,颜色集与直方图的关系如下:因此,颜色集表示为一个二进制向量8.2.4颜色相关矢量颜色相关矢量CCV(ColorCorrelationVector)表示方法与颜色直方图相似,但它同时考虑了空间信息。设H是颜色直方图矢量,CCV的计算步骤:图像平滑:目的是为了消除邻近像素间的小变化的影响。对颜色空间进行量化,使之在图像中仅包含n个不同颜色。在一个给定的颜色元内,将像素分成相关或不相关两类。根据各连通区的大小,将像素分成相关和不相关两部分。8.3形状特征描述8.3.1几个基本概念8.3.2区域内部空间域分析8.3.3区域内部变换分析8.3.4区域边界的形状特征描述8.3.1几个基本概念邻域与邻接对于任意像素(i,j),(s,t)是一对适当的整数,则把像素的集合{(i+s,j+t)}叫做像素(i,j)的邻域.直观上看,这是像素(i,j)附近的像素形成的区域.最经常采用的是4-邻域和8-邻域(a)(b)4-邻域和8-邻域邻域与邻接互为4-邻域的两像素叫4-邻接。互为8-邻域的两像素叫8-邻接。对于图像中具有相同值的两个像素A和B,如果所有和A、B具有相同值的像素序列存在,并且和互为4-邻接或8-邻接,那么像素和叫做4-连接或8-连接,以上的像素序列叫4-路径或8-路径。像素的连接像素的连接在图像中,把互相连接的像素的集合汇集为一组,于是具有若干个0值的像素和具有若干个l值的像素的组就产生了。把这些组叫做连接成分,也称作连通成分。在研究一个图像连接成分的场合,若1像素的连接成分用4-连接或8-连接,而0像素连接成分不用相反的8-连接或4-连接就会产生矛盾。假设各个1像素用8-连接,则其中的0像素就被包围起来。如果对0像素也用8-连接,这就会与左下的0像素连接起来,从而产生矛盾。因此0像素和1像素应采用互反的连接形式,即如果1像素采用8-连接,则0像素必须采用4-连接。连接成分连接性矛盾示意图在0-像素的连接成分中,如果存在和图像外围的1行或1列的0-像素不相连接的成分,则称之为孔。不包含有孔的1像素连接成分叫做单连接成分。含有孔的l像素连接成分叫做多重连接成分。区域内部空间域分析是不经过变换而直接在图像的空间域,对区域内提取形状特征。1.欧拉数图像的欧拉数是图像的拓扑特性之—,它表明了图像的连通性。下图(a)的图形有一个连接成分和一个孔,所以它的欧拉数为0,而下图(b)有一个连接成分和两个孔,所以它的欧拉数为-1。可见通过欧拉数可用于目标识别。8.3.2区域内部空间域分析具有欧拉数为0和-1的图形用线段表示的区域,可根据欧拉数来描述。如下图中的多边形网,把这多边形网内部区域分成面和孔。如果设顶点数为W,边数为Q,面数为F,则得到下列关系,这个关系称为欧拉公式。图中的多边形网,有7个顶点、11条边、2个面、1个连接区、3个孔,因此,由上式可得到。包含多角网络的区域2312117E一幅图像或一个区域中的连接成分数C和孔数H不会受图像的伸长、压缩、旋转、平移的影响,但如果区域撕裂或折叠时,C和H就会发生变化。可见,区域的拓扑性质对区域的全局描述是很有用的,欧拉数是区域一个较好的描述子。2.凹凸性凹凸性是区域的基本特征之一,区域凹凸性可通过以下方法进行判别:区域内任意两像素间的连线穿过区域外的像素,则此区域为凹形。相反,连接图形内任意两个像素的线段,如果不通过这个图形以外的像素,则这个图形称为是凸的。任何一个图形,把包含它的最小的凸图形叫这个图形的凸闭包。凸图形的凸闭包就是它本身。从凸闭包除去原始图形的部分后,所产生的图形的位置和形状将成为形状特征分析的重要线索。凹形面积可将凸封闭包减去凹形得到。区域的凹凸性3.距离距离在实际图像处理过程中往往是作为一个特征量出现,因此对其精度的要求并不是很高。所以对于给定图像中三点A,B,C,当函数D(A,B)满足下式的条件时,把D(A,B)叫做A和B的距离,也称为距离函数。第一个式子表示距离具有非负性,并且当A和B重合时,等号成立;第二个式子表示距离具有对称性第三个式子表示距离的三角不等式。计算点(i,j)和(h,k)间距离常采用的几种方法:(1)欧氏距离,用来表示。(2)4-邻域距离,也称为街区距离。(3)8-邻域距离,也称为棋盘距离。这三种距离之间的关系:,如图所示。街区距离和棋、盘距离都是欧式距离的一种近似。下图中表示了以中心像素为原点的各像素的距离。从离开一个像素的等距离线可以看出,在欧氏距离中大致呈圆形,在棋盘距离中呈方形,在街区距离中呈倾斜45度的正方形。街区距离是图像中两点间最短的4-连通的长度,而棋盘距离则是两点间最短的8-连通的长度。此外,把4-邻域距离和8-邻域距离组合起来而得到的八角形距离有时也被采用,它的等距线呈八角形。4.区域的测量区域的大小及形状表示方法主要包括以下几种:(1)面积S:图像中的区域面积S可以用同一标记的区域内像素的个数总和来表示。按上述表示法区域R的面积S=41。区域面积可以通过扫描图像,累加同一标记像素得到,或者是直接在加标记处理时计数得到。区域的面积和周长(2)周长L:区域周长L是用区域中相邻边缘点间距离之和来表示。采用不同的距离公式,周长L的计算不同。常用的有两种:一种计算方法是采用欧式距离,在区域的边界像素中,设某像素与其水平或垂直方向上相邻边缘像素间的距离为1,与倾斜方向上相邻边缘像素间的距离为。周长就是这些像素间距离的总和。这种方法计算的周长与实际周长相符,因而计算精度比较高。另一种计算方法是采用8邻域距离,将边界的像素个数总和作为周长。也就是说,只要累加边缘点数即可得到周长,比较方便,但是,它与实际周长间有差异。根据这两种计算周长的方式,以区域的面积和周长图为例,区域的周长分别是和22。(3)圆形度R0:圆形度R0用来描述景物形状接近圆形的程度,它是测量区域形状常用的量。其计算公式为:式中为S区域面积;L为区域周长R0值的范围为,R0值的大小反映了被测量边界的复杂程度,越复杂的形状取值越小。R0值越大,则区域越接近圆形。(4)形状复杂性e:形状复杂性常用离散指数表示,其计算公式为:该式描述了区域单位面积的周长大小,e值越大,表明单位面积的周长大,即区域离散,则为复杂形状;反之,则为简单形状。e值最小的区域为圆形。典型连续区域的计算结果为:圆形e=12.6;正方形e=16.0;正三角形e=20.8。此外,常用的特征量还有区域的幅宽、占有率和直径等。8.3.3区域内部变换分析区域内部变换分析是形状分析的经典方法,它包括求区域的各阶统计矩、投影和截口等。1.矩法具有两个变元的有界函数f(x,y)的p+q阶矩定义为这里p和q可取所有的非负整数值。参数称为p+q矩的阶。由于p和q可取所有的非负整数值,它们产生一个矩的无限集。而且,这个集合完全可以确定函数f(x,y)本身。换句话说,集合{mpq}对于函数是唯一的,也只有f(x,y)才具有该特定的矩集。对于大小为的数字图像f(i,j)的矩为:(1)区域形心位置0阶矩m00是图像灰度f(i,j)的总和。二值图像的m00则表示对象物的面积。如果用m00来规格化1阶矩m10及m01,则得到一个物体的重心坐标:(2)中心矩中心矩是以重心作为原点进行计算:中心矩具有位置无关性,利用中心矩可以提取区域的一些基本形状特征。利用中心矩计算公式可以计算出三阶以下的中心矩:把中心矩再用零阶中心矩来规格化,叫做规格化中心矩,记作,表达式为:式中:rpqpqMM00,4,3,2qp2qpr(3)不变矩为了使矩描述子与大小、平移、旋转无关,可以用二阶和三阶规格化中心矩导出七个不变矩组Φ。不变矩描述分割出的区域时,具有对平移、旋转和尺寸大小都不变的性质。利用二阶和三阶规格中心矩导出的7个不变矩组为:2.投影和截口对于区域为的二值图像和抑制背景的图像f(i,j),它在i轴上的投影为:在j轴上的投影为:由以上两式所绘出的曲线都是离散波形曲线。这样就把二维图像的形状分析转化为对一维离散曲线的波形分析。nijifipnj,,2,1),()(1njjifjpni,,2,1),()(1固定i0,得到图像f(i,j)的过i0而平行于轴的截口。固定j0,得到图像f(i,j)的过j0而平行于i轴的截口。二值图像f(i,j)的截口长度为以上公式均是区域的形状特征。njjif,,2,1),(0njjif,,2,1),(0ninjjifjsjifis100100),()(),()(8.3.4区域边界的形状特征描述区域外部形状是指构成区域边界的像素集合。1.链码描述通过边界的搜索等算法的处理,所获得的输出最直接的方式是各边界点像素的坐标,也可以用一组被称为链码的代码来表示,这种链码组合的表示既利于有关形状特征的计算,也利于节省存储空间。用于描述曲线的方向链码法是由Freeman提出的,该方法采用曲线起始点的坐标和斜率(方向)来表示曲线。对于离散的数字图像而言,区域的边界轮廓可理解为相邻边界像素之间的单元连线逐段相连而成。对于图像某像素的8-邻域,把该像素和其8-邻域的各像素连线方向按八链码原理图所示进行编码,用0,1,2,3,4,5,6,7表示8个方向,这种代码称为方向码。八链码原理图八链码例子其中偶数码为水平或垂直方向的链码,码长为1;奇数码为对角线方向的链码,码长为。八链码例子图为一条封闭曲线,若以s为起始点,按逆时针的方向编码,所构成的链码为556570700122333,若按顺时针方向编码,则得到链码与逆时针方向的编码不同。边界链码
本文标题:常见的图像特征提取与描述方法如颜色特征纹理特征和
链接地址:https://www.777doc.com/doc-4084534 .html