您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 商业计划书 > 1.5.3定积分的概念
1.5.3定积分的概念一、定积分的定义11()()nniiiibafxfn小矩形面积和S=如果当n∞时,S的无限接近某个常数,这个常数为函数f(x)在区间[a,b]上的定积分,记作baf(x)dx,即baf(x)dxni10limf(i)xi。从求曲边梯形面积S的过程中可以看出,通过“四步曲”:分割---近似代替----求和------取极限得到解决.1()lim()ninibafxdxfnba即定积分的定义:定积分的相关名称:———叫做积分号,f(x)——叫做被积函数,f(x)dx—叫做被积表达式,x———叫做积分变量,a———叫做积分下限,b———叫做积分上限,[a,b]—叫做积分区间。1()lim()ninibafxdxfnba即Oabxy)(xfybaIdxxf)(iinixf)(lim10被积函数被积表达式积分变量积分下限积分上限baf(x)dxbaf(t)dtbaf(u)du。说明:(1)定积分是一个数值,它只与被积函数及积分区间有关,而与积分变量的记法无关,即(2)定义中区间的分法和i的取法是任意的。(但为了方便计算,一般采用等分的方式,i取左端点或右端点.)baf(x)dxbaf(x)dx-(3)二、定积分的几何意义:Oxyabyf(x)baf(x)dxcaf(x)dxbcf(x)dx。xa、xb与x轴所围成的曲边梯形的面积。当f(x)0时,积分dxxfba)(在几何上表示由y=f(x)、特别地,当ab时,有baf(x)dx0。当f(x)0时,由yf(x)、xa、xb与x轴所围成的曲边梯形位于x轴的下方,xyOdxxfSba)]([,dxxfba)(.abyf(x)yf(x)dxxfSba)]([baf(x)dxcaf(x)dxbcf(x)dx。S上述曲边梯形面积的负值。定积分的几何意义:积分baf(x)dx在几何上表示baf(x)dxcaf(x)dxbcf(x)dx。Sabyf(x)Oxy()ygx探究:根据定积分的几何意义,如何用定积分表示图中阴影部分的面积?abyf(x)Oxy1()baSfxdx()ygx12()()bbaaSSSfxdxgxdx2()baSgxdx三、定积分的基本性质性质1.dx)]x(g)x(f[bababadx)x(gdx)x(f性质2.badx)x(kfbadx)x(fk三:定积分的基本性质定积分关于积分区间具有可加性bccabadx)x(fdx)x(fdx)x(f性质3.2121ccbccabadx)x(fdx)x(fdx)x(fdx)x(fOxyabyf(x)C性质3不论a,b,c的相对位置如何都有aby=f(x)baf(x)dxcaf(x)dxbcf(x)dx。baf(x)dxcaf(x)dxbcf(x)dx。baf(x)dxcaf(x)dxbcf(x)dx。cOxybaf(x)dxcaf(x)dxbcf(x)dx。例1:利用定积分的定义,计算的值.130xdx解:令3xxf)((1)分割在区间【0,1】上等间隔地插入n-1个点,把区间等分成n个小区间).,,2,1(],1[ninini每个区间长度.11xnnini(2)近似代替、作和则取),,,2,1(niniinSdxx103nnixnifnini1.)().(311224134)1(41.11nnninni2)11(41n(3)取极限41n1141nlimnlimdxx2n103)(Sdxxx2102)(dxxxdx210102例2、利用定积分的性质计算分析:利用定积分的性质1、性质2,将定积分转化为利用定积分的定义分别求出,,dxxxdx10102就得到定积分的值。dxxx2102)(
本文标题:1.5.3定积分的概念
链接地址:https://www.777doc.com/doc-4085509 .html