您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 浙教版七年级数学下册第三单元《整式的乘除》培优题
第1页(共15页)浙教版七年级数学下册第三单元《整式的乘除》培优题一.选择题(共7小题)1.=()A.1B.C.2D.2.已知xm=a,xn=b(x≠0),则x3m﹣2n的值等于()A.3a﹣2bB.a3﹣b2C.a3b2D.3.根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是()A.(a+b)(a+2b)=a2+3ab+2b2B.(3a+b)(a+b)=3a2+4ab+b2C.(2a+b)(a+b)=2a2+3ab+b2D.(3a+2b)(a+b)=3a2+5ab+2b24.使(x2+px+8)(x2﹣3x+q)的乘积不含x3和x2,则p、q的值为()A.p=0,q=0B.p=﹣3,q=﹣1C.p=3,q=1D.p=﹣3,q=15.已知2a﹣b=2,那么代数式4a2﹣b2﹣4b的值是()A.6B.4C.2D.06.设0<n<m,m2+n2=4mn,则的值等于()A.3B.C.D.27.为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1B.52013+1C.D.第2页(共15页)二.填空题(共5小题)8.若代数式x2+3x+2可以表示为(x﹣1)2+a(x﹣1)+b的形式,则a+b的值是.9.有足够多的长方形和正方形的卡片,如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).(1)请画出如图这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是.(2)小明想用类似的方法拼成了一个边长为a+3b和2a+b的矩形框来解释某一个乘法公式,那么小明需用2号卡片张,3号卡片张.10.4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x=.11.若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为.12.若m1,m2,…m2015是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2015=1525,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,则在m1,m2,…m2015中,取值为2的个数为.第3页(共15页)三.解答题(共3小题)13.已知a是大于1的实数,且有a3+a﹣3=p,a3﹣a﹣3=q成立.(1)若p+q=4,求p﹣q的值;(2)当q2=22n+﹣2(n≥1,且n是整数)时,比较p与(a3+)的大小,并说明理由.第4页(共15页)14.归纳与猜想:(1)计算:①(x﹣1)(x+1)=;②(x﹣1)(x2+x+1)=;③(x﹣1)(x3+x2+x+1)=;(2)根据以上结果,写出下列各式的结果.①(x﹣1)(x6+x5+x4+x3+x2+x+1)=;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)=;(3)(x﹣1)(xn﹣1+xn﹣2+xn﹣3+…+x2+x+1)=(n为整数);(4)若(x﹣1)•m=x15﹣1,则m=;(5)根据猜想的规律,计算:226+225+…+2+1.第5页(共15页)15.杨辉三角形是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n(此处n=0,1,2,3,4,5…)的计算结果中的各项系数.杨辉三角最本质的特征是,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…上面的构成规律聪明的你一定看懂了!(1)请直接写出(a+b)6的计算结果中a2b4项的系数是;(2)利用上述规律直接写出27=;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与的积.(4)由此你可以写出115=.(5)由第行可写出118=.第6页(共15页)浙教版七年级数学下册第三单元《整式乘除》参考答案与试题解析一.选择题(共7小题)1.(2012秋•南陵县期末)=()A.1B.C.2D.【分析】根据xa•ya=(xy)a,进行运算即可.【解答】解:原式=(×)2004×=.故选B.【点评】此题考查了同底数幂的乘法运算,属于基础题,注意式子:xa•ya=(xy)a的运用.2.(2001•乌鲁木齐)已知xm=a,xn=b(x≠0),则x3m﹣2n的值等于()A.3a﹣2bB.a3﹣b2C.a3b2D.【分析】利用同底数幂的除法和幂的乘方的性质的逆运算计算即可.【解答】解:∵xm=a,xn=b(x≠0),∴x3m﹣2n=x3m÷x2n=.故选D.【点评】本题考查了同底数幂的除法,幂的乘方的性质,逆用性质是解题的关键.3.(2016春•苏州期中)根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是()第7页(共15页)A.(a+b)(a+2b)=a2+3ab+2b2B.(3a+b)(a+b)=3a2+4ab+b2C.(2a+b)(a+b)=2a2+3ab+b2D.(3a+2b)(a+b)=3a2+5ab+2b2【分析】大长方形的长为3a+2b,宽为a+b,表示出面积;也可以由三个边长为a的正方形,2个边长为b的正方形,以及5个长为b,宽为a的长方形面积之和表示,即可得到正确的选项.【解答】解:根据图形得:(3a+2b)(a+b)=3a2+5ab+2b2.故选:D.【点评】此题考查了多项式乘多项式,弄清题意是解本题的关键.4.(2016秋•简阳市期中)使(x2+px+8)(x2﹣3x+q)的乘积不含x3和x2,则p、q的值为()A.p=0,q=0B.p=﹣3,q=﹣1C.p=3,q=1D.p=﹣3,q=1【分析】根据多项式乘多项式的法则计算,然后根据不含x2项和x3项就是这两项的系数等于0列式,求出p和q的值,从而得出.【解答】解:(x2+px+8)(x2﹣3x+q),=x4+(p﹣3)x3+(8﹣3p+q)x2+(pq﹣24)x+8q,∵(x2+px+8)(x2﹣3x+q)的展开式中不含x2项和x3项,∴解得:.故选:C.【点评】本题考查了多项式乘多项式的运算法则,根据不含哪一项就是让这一项的系数等于0列式是解题的关键.5.(2015春•房山区期末)已知2a﹣b=2,那么代数式4a2﹣b2﹣4b的值是()A.6B.4C.2D.0第8页(共15页)【分析】根据完全平方公式,可得平方差公式,根据平方差公式,可得答案.【解答】解:4a2﹣b2﹣4b=4a2﹣(b2+4b+4)+4=(2a)2﹣(b+2)2+4=[2a+(b+2)][2a﹣(b+2)]+4=(2a+b+2)(2a﹣b﹣2)+4当2a﹣b=2时,原式=0+4=4,故选:B.【点评】本题考查了完全平方公式,利用完全平方公式得出平方差公式是解题关键.6.(2012•宁波模拟)设0<n<m,m2+n2=4mn,则的值等于()A.3B.C.D.2【分析】已知等式变形后利用完全平方公式化简得到关系式,代入所求式子计算即可得到结果.【解答】解:m2+n2=4mn变形得:(m﹣n)2=2mn,(m+n)2=6mn,∵0<n<m,∴m﹣n>0,m+n>0,∴m﹣n=,m+n=,∴原式===2.故选D.【点评】此题考查了完全平方公式,以及平方差公式,熟练掌握公式是解本题的关键.7.(2014•金水区校级模拟)为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1B.52013+1C.D.【分析】根据题目所给计算方法,令S=1+5+52+53+…+52012,再两边同时乘以5,第9页(共15页)求出5S,用5S﹣S,求出4S的值,进而求出S的值.【解答】解:令S=1+5+52+53+…+52012,则5S=5+52+53+…+52012+52013,5S﹣S=﹣1+52013,4S=52013﹣1,则S=.故选D.【点评】本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键.二.填空题(共5小题)8.(2012•泰州)若代数式x2+3x+2可以表示为(x﹣1)2+a(x﹣1)+b的形式,则a+b的值是11.【分析】利用x2+3x+2=(x﹣1)2+a(x﹣1)+b,将原式进行化简,得出a,b的值,进而得出答案.【解答】解:∵x2+3x+2=(x﹣1)2+a(x﹣1)+b=x2+(a﹣2)x+(b﹣a+1),∴a﹣2=3,∴a=5,∵b﹣a+1=2,∴b﹣5+1=2,∴b=6,∴a+b=5+6=11,故答案为:11.【点评】此题主要考查了整式的混合运算与化简,根据已知得出x2+3x+2=x2+(a﹣2)x+(b﹣a+1)是解题关键.9.(2012•杭州模拟)有足够多的长方形和正方形的卡片,如图.第10页(共15页)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).(1)请画出如图这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是a2+3ab+2b2=(a+b)(a+2b).(2)小明想用类似的方法拼成了一个边长为a+3b和2a+b的矩形框来解释某一个乘法公式,那么小明需用2号卡片3张,3号卡片7张.【分析】(1)画出相关草图,表示出拼合前后的面积即可;(2)得到所给矩形的面积,看有几个b2,几个ab即可.【解答】解:(1)如图所示:故答案为:a2+3ab+2b2=(a+b)(a+2b);(2)(a+3b)(2a+b)=2a2+ab+6ab+3b2=2a2+7ab+3b2,需用2号卡片3张,3号卡片7张.故答案为:a2+3ab+2b2=(a+b)(a+2b);3;7.【点评】考查多项式与多项式相乘问题;根据面积的不同表示方法得到相应的等式是解决本题的关键.10.(2015•崇左)4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x=1.【分析】利用题中的新定义化简已知等式,求出解即可得到x的值.【解答】解:利用题中新定义得:(x+3)2﹣(x﹣3)2=12,第11页(共15页)整理得:12x=12,解得:x=1.故答案为:1.【点评】此题考查了整式的混合运算,弄清题中的新定义是解本题的关键.11.(2014春•苏州期末)若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为y=4(x+1)2+1.【分析】将4m变形,转化为关于2m的形式,然后再代入整理即可【解答】解:∵4m+1=22m×4=(2m)2×4,x=2m﹣1,∴2m=x+1,∵y=1+4m+1,∴y=4(x+1)2+1,故答案为:y=4(x+1)2+1.【点评】本题考查幂的乘方的性质,解决本题的关键是利用幂的乘方的逆运算,把含m的项代换掉.12.(2015•雅安)若m1,m2,…m2015是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2015=1525,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,则在m1,m2,…m2015中,取值为2的个数为510.【分析】通过m1,m2,…m2015是从0,1,2这三个数中取值的一列数,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510从而得到1的个数,由m1+m2+…+m2015=1525得到2的个数
本文标题:浙教版七年级数学下册第三单元《整式的乘除》培优题
链接地址:https://www.777doc.com/doc-4087312 .html