您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2017年山东省春季高考数学试卷(解析版)
第1页(共21页)2017年山东省春季高考数学试卷一、选择题1.已知全集U={1,2},集合M={1},则∁UM等于()A.∅B.{1}C.{2}D.{1,2}2.函数的定义域是()A.[﹣2,2]B.(﹣∞,﹣2]∪[2,+∞)C.(﹣2,2)D.(﹣∞,﹣2)∪(2,+∞)3.下列函数中,在区间(﹣∞,0)上为增函数的是()A.y=xB.y=1C.D.y=|x|4.二次函数f(x)的图象经过两点(0,3),(2,3)且最大值是5,则该函数的解析式是()A.f(x)=2x2﹣8x+11B.f(x)=﹣2x2+8x﹣1C.f(x)=2x2﹣4x+3D.f(x)=﹣2x2+4x+35.等差数列{an}中,a1=﹣5,a3是4与49的等比中项,且a3<0,则a5等于()A.﹣18B.﹣23C.﹣24D.﹣326.已知A(3,0),B(2,1),则向量的单位向量的坐标是()A.(1,﹣1)B.(﹣1,1)C.D.7.“p∨q为真”是“p为真”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.函数y=cos2x﹣4cosx+1的最小值是()A.﹣3B.﹣2C.5D.69.下列说法正确的是()A.经过三点有且只有一个平面B.经过两条直线有且只有一个平面C.经过平面外一点有且只有一个平面与已知平面垂直D.经过平面外一点有且只有一条直线与已知平面垂直第2页(共21页)10.过直线x+y+1=0与2x﹣y﹣4=0的交点,且一个方向向量的直线方程是()A.3x+y﹣1=0B.x+3y﹣5=0C.3x+y﹣3=0D.x+3y+5=011.文艺演出中要求语言类节目不能相邻,现有4个歌舞类节目和2个语言类节目,若从中任意选出4个排成节目单,则能排出不同节目单的数量最多是()A.72B.120C.144D.28812.若a,b,c均为实数,且a<b<0,则下列不等式成立的是()A.a+c<b+cB.ac<bcC.a2<b2D.13.函数f(x)=2kx,g(x)=log3x,若f(﹣1)=g(9),则实数k的值是()A.1B.2C.﹣1D.﹣214.如果,,那么等于()A.﹣18B.﹣6C.0D.1815.已知角α的终边落在直线y=﹣3x上,则cos(π+2α)的值是()A.B.C.D.16.二元一次不等式2x﹣y>0表示的区域(阴影部分)是()A.B.C.D.17.已知圆C1和C2关于直线y=﹣x对称,若圆C1的方程是(x+5)2+y2=4,则圆C2的方程是()A.(x+5)2+y2=2B.x2+(y+5)2=4C.(x﹣5)2+y2=2D.x2+(y﹣5)2=418.若二项式的展开式中,只有第4项的二项式系数最大,则展开式中的常数项是()A.20B.﹣20C.15D.﹣1519.从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技能大赛,在同样条件下经过多轮测试,成绩分析如表所示,根据表中数据判断,最佳人选为()成绩分析表甲乙丙丁第3页(共21页)平均成绩96968585标准差s4242A.甲B.乙C.丙D.丁20.已知A1,A2为双曲线(a>0,b>0)的两个顶点,以A1A2为直径的圆与双曲线的一条渐近线交于M,N两点,若△A1MN的面积为,则该双曲线的离心率是()A.B.C.D.二、填空题:21.若圆锥的底面半径为1,母线长为3,则该圆锥的侧面积等于.22.在△ABC中,a=2,b=3,∠B=2∠A,则cosA=.23.已知F1,F2是椭圆+=1的两个焦点,过F1的直线交椭圆于P、Q两点,则△PQF2的周长等于.24.某博物馆需要志愿者协助工作,若从6名志愿者中任选3名,则其中甲、乙两名志愿者恰好同时被选中的概率是.25.对于实数m,n,定义一种运算:,已知函数f(x)=a*ax,其中0<a<1,若f(t﹣1)>f(4t),则实数t的取值范围是.三、解答题:26.已知函数f(x)=log2(3+x)﹣log2(3﹣x),(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;(2)已知f(sinα)=1,求α的值.27.某职业学校的王亮同学到一家贸易公司实习,恰逢该公司要通过海运出口一批货物,王亮同学随公司负责人到保险公司洽谈货物运输期间的投保事宜,保险公司提供了缴纳保险费的两种方案:第4页(共21页)①一次性缴纳50万元,可享受9折优惠;②按照航行天数交纳:第一天缴纳0.5元,从第二天起每天交纳的金额都是其前一天的2倍,共需交纳20天.请通过计算,帮助王亮同学判断那种方案交纳的保费较低.28.已知直三棱柱ABC﹣A1B1C1的所有棱长都相等,D,E分别是AB,A1C1的中点,如图所示.(1)求证:DE∥平面BCC1B1;(2)求DE与平面ABC所成角的正切值.29.已知函数.(1)求该函数的最小正周期;(2)求该函数的单调递减区间;(3)用“五点法”作出该函数在长度为一个周期的闭区间上的简图.30.已知椭圆的右焦点与抛物线y2=4x的焦点F重合,且椭圆的离心率是,如图所示.(1)求椭圆的标准方程;(2)抛物线的准线与椭圆在第二象限相交于点A,过点A作抛物线的切线l,l与椭圆的另一个交点为B,求线段AB的长.第5页(共21页)2017年山东省春季高考数学试卷参考答案与试题解析一、选择题1.已知全集U={1,2},集合M={1},则∁UM等于()A.∅B.{1}C.{2}D.{1,2}【考点】1F:补集及其运算.【分析】根据补集的定义求出M补集即可.【解答】解:全集U={1,2},集合M={1},则∁UM={2}.故选:C.2.函数的定义域是()A.[﹣2,2]B.(﹣∞,﹣2]∪[2,+∞)C.(﹣2,2)D.(﹣∞,﹣2)∪(2,+∞)【考点】33:函数的定义域及其求法.【分析】根据函数y的解析式,列出不等式求出x的取值范围即可.【解答】解:函数,∴|x|﹣2>0,即|x|>2,解得x<﹣2或x>2,∴函数y的定义域是(﹣∞,﹣2)∪(2,+∞).故选:D.3.下列函数中,在区间(﹣∞,0)上为增函数的是()A.y=xB.y=1C.D.y=|x|【考点】3E:函数单调性的判断与证明.【分析】根据基本初等函数的单调性,判断选项中的函数是否满足条件即可.【解答】解:对于A,函数y=x,在区间(﹣∞,0)上是增函数,满足题意;对于B,函数y=1,在区间(﹣∞,0)上不是单调函数,不满足题意;第6页(共21页)对于C,函数y=,在区间(﹣∞,0)上是减函数,不满足题意;对于C,函数y=|x|,在区间(﹣∞,0)上是减函数,不满足题意.故选:A.4.二次函数f(x)的图象经过两点(0,3),(2,3)且最大值是5,则该函数的解析式是()A.f(x)=2x2﹣8x+11B.f(x)=﹣2x2+8x﹣1C.f(x)=2x2﹣4x+3D.f(x)=﹣2x2+4x+3【考点】3W:二次函数的性质.【分析】由题意可得对称轴x=1,最大值是5,故可设f(x)=a(x﹣1)2+5,代入其中一个点的坐标即可求出a的值,问题得以解决【解答】解:二次函数f(x)的图象经过两点(0,3),(2,3),则对称轴x=1,最大值是5,可设f(x)=a(x﹣1)2+5,于是3=a+5,解得a=﹣2,故f(x)=﹣2(x﹣1)2+5=﹣2x2+4x+3,故选:D.5.等差数列{an}中,a1=﹣5,a3是4与49的等比中项,且a3<0,则a5等于()A.﹣18B.﹣23C.﹣24D.﹣32【考点】8F:等差数列的性质;84:等差数列的通项公式.【分析】根据题意,由等比数列的性质可得(a3)2=4×49,结合解a3<0可得a3的值,进而由等差数列的性质a5=2a3﹣a1,计算即可得答案.【解答】解:根据题意,a3是4与49的等比中项,则(a3)2=4×49,解可得a3=±14,又由a3<0,则a3=﹣14,又由a1=﹣5,则a5=2a3﹣a1=﹣23,故选:B.6.已知A(3,0),B(2,1),则向量的单位向量的坐标是()第7页(共21页)A.(1,﹣1)B.(﹣1,1)C.D.【考点】95:单位向量.【分析】先求出=(﹣1,1),由此能求出向量的单位向量的坐标.【解答】解:∵A(3,0),B(2,1),∴=(﹣1,1),∴||=,∴向量的单位向量的坐标为(,),即(﹣,).故选:C.7.“p∨q为真”是“p为真”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由真值表可知:“p∨q为真命题”则p或q为真命题,故由充要条件定义知p∨q为真”是“p为真”必要不充分条件【解答】解:“p∨q为真命题”则p或q为真命题,所以“p∨q为真”推不出“p为真”,但“p为真”一定能推出“p∨q为真”,故“p∨q为真”是“p为真”的必要不充分条件,故选:B.8.函数y=cos2x﹣4cosx+1的最小值是()A.﹣3B.﹣2C.5D.6【考点】HW:三角函数的最值.【分析】利用查余弦函数的值域,二次函数的性质,求得y的最小值.【解答】解:∵函数y=cos2x﹣4cosx+1=(cox﹣2)2﹣3,且cosx∈[﹣1,1],故当cosx=1时,函数y取得最小值为﹣2,故选:B.9.下列说法正确的是()A.经过三点有且只有一个平面B.经过两条直线有且只有一个平面C.经过平面外一点有且只有一个平面与已知平面垂直D.经过平面外一点有且只有一条直线与已知平面垂直第8页(共21页)【考点】LJ:平面的基本性质及推论.【分析】在A中,经过共线的三点有无数个平面;在B中,两条异面直线不能确定一个平面;在C中,经过平面外一点无数个平面与已知平面垂直;在D中,由线面垂直的性质得经过平面外一点有且只有一条直线与已知平面垂直.【解答】在A中,经过不共线的三点且只有一个平面,经过共线的三点有无数个平面,故A错误;在B中,两条相交线能确定一个平面,两条平行线能确定一个平面,两条异面直线不能确定一个平面,故B错误;在C中,经过平面外一点无数个平面与已知平面垂直,故C错误;在D中,由线面垂直的性质得经过平面外一点有且只有一条直线与已知平面垂直,故D正确.故选:D.10.过直线x+y+1=0与2x﹣y﹣4=0的交点,且一个方向向量的直线方程是()A.3x+y﹣1=0B.x+3y﹣5=0C.3x+y﹣3=0D.x+3y+5=0【考点】IB:直线的点斜式方程.【分析】求出交点坐标,代入点斜式方程整理即可.【解答】解:由,解得:,由方向向量得:直线的斜率k=﹣3,故直线方程是:y+2=﹣3(x﹣1),整理得:3x+y﹣1=0,故选:A.11.文艺演出中要求语言类节目不能相邻,现有4个歌舞类节目和2个语言类节目,若从中任意选出4个排成节目单,则能排出不同节目单的数量最多是()A.72B.120C.144D.288【考点】D8:排列、组合的实际应用.第9页(共21页)【分析】根据题意,分3种情况讨论:①、取出的4个节目都是歌舞类节目,②、取出的4个节目有3个歌舞类节目,1个语言类节目,③、取出的4个节目有2个歌舞类节目,2个语言类节目,分别求出每种情况下可以排出节目单的数目,由分类计数原理计算可得答案.【解答】解:根据题意,分3种情况讨论:①、取出的4个节目都是歌舞类节目,有1种取法,将4个节目全排列,有A44=24种可能,即可以排出24个不同节目单,②、取出的4个节目有3个歌舞类节目,1个语言类节目,有C21C43=8种取法,将4个节目全排列,有A44=24种可能,则以排出8×24=192个不同节目单,③、取出的4个节目有2个歌舞类节目,2个语言类节目,有C22C42=6种取法,将2个歌舞类节目全排列,有A22=2种情况,排好后有3个空位,在3个空位中任选2个,安排2个语言类节目,有A32=6种情况,此时有6×2×6=72种可能,就可以排出72个不同节目单,则一共可以排出24+192+72=288个不同节目单,故选:D.12.若a,b,c均为实数,且a<b<0,则下列不等式成立的是
本文标题:2017年山东省春季高考数学试卷(解析版)
链接地址:https://www.777doc.com/doc-4088530 .html