您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 三角函数及反三角函数
三角函数的基本关系式倒数关系:商的关系:平方关系:tanα·cotα=1sinα·cscα=1cosα·secα=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα·tanβtanα-tanβtan(α-β)=——————1+tanα·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin—--·cos—-—22α+βα-βsinα-sinβ=2cos—--·sin—-—22α+βα-βcosα+cosβ=2cos—--·cos—-—22α+βα-βcosα-cosβ=-2sin—--·sin—-—22sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]化asinα±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)函数变换360k+αsinαcosαtanαcotαsecαcscα90°-αcosαsinαcotαtanαcscαsecα90°+αcosα-sinα-cotα-tanα-cscαsecα180°-αsinα-cosα-tanα-cotα-secαcscα180°+α-sinα-cosαtanαcotα-secα-cscα270°-α-cosα-sinαcotαtanα-cscα-secα270°+α-cosαsinα-cotα-tanαcscα-secα360°-α-sinαcosα-tanα-cotαsecα-cscα﹣α-sinαcosα-tanα-cotαsecα-cscα反三角函数三角函数的反函数,是多值函数。它们是反正弦Arcsinx,反余弦Arccosx,反正切Arctanx,反余切Arccotx等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsinx;相应地,反余弦函数y=arccosx的主值限在0≤y≤π;反正切函数y=arctanx的主值限在-π/2yπ/2;反余切函数y=arccotx的主值限在0yπ。反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。其概念首先由欧拉提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x).反三角函数主要是三个:y=arcsin(x),定义域[-1,1],值域[-π/2,π/2],图象用红色线条;y=arccos(x),定义域[-1,1],值域[0,π],图象用兰色线条;y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;sinarcsin(x)=x,定义域[-1,1],值域【-π/2,π/2】证明方法如下:设arcsin(x)=y,则sin(y)=x,将这两个式子代如上式即可得为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsinx;相应地,反余弦函数y=arccosx的主值限在0≤y≤π;反正切函数y=arctanx的主值限在-π/2yπ/2;反余切函数y=arccotx的主值限在0yπ。反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。其概念首先由欧拉提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x).(1)正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。arcsinx表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。(2)余弦函数y=cosx在[0,π]上的反函数,叫做反余弦函数。arccosx表示一个余弦值为x的角,该角的范围在[0,π]区间内。(3)正切函数y=tanx在(-π/2,π/2)上的反函数,叫做反正切函数。arctanx表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。反三角函数主要是三个:y=arcsin(x),定义域[-1,1],值域[-π/2,π/2]图象用红色线条;y=arccos(x),定义域[-1,1],值域[0,π],图象用蓝色线条;y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;sin(arcsinx)=x,定义域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx证明方法如下:设arcsin(x)=y,则sin(y)=x,将这两个式子代入上式即可得其他几个用类似方法可得cos(arccosx)=x,arccos(-x)=π-arccosxtan(arctanx)=x,arctan(-x)=-arctanx反三角函数其他公式arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotxarcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈[—π/2,π/2]时,有arcsin(sinx)=x当x∈[0,π],arccos(cosx)=xx∈(—π/2,π/2),arctan(tanx)=xx∈(0,π),arccot(cotx)=xx〉0,arctanx=π/2-arctan1/x,arccotx类似若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)
本文标题:三角函数及反三角函数
链接地址:https://www.777doc.com/doc-4089712 .html