您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 解三角形专题(高考题)练习【附答案】---副本
1、在b、c,向量2sin,3mB,2cos2,2cos12BnB,且//mn。(I)求锐角B的大小;(II)如果2b,求ABC的面积ABCS的最大值。5、在△ABC中,角A,B,C的对边分别为a,b,c,且.coscos3cosBcBaCb(I)求cosB的值;(II)若2BCBA,且22b,求ca和b的值.6、在ABC中,5cos5A,10cos10B.(Ⅰ)求角C;(Ⅱ)设2AB,求ABC的面积.7、在△ABC中,A、B、C所对边的长分别为a、b、c,已知向量(1,2sin)mA,(sin,1cos),//,3.nAAmnbca满足(I)求A的大小;(II)求)sin(6B的值.8、△ABC中,a,b,c分别是角A,B,C的对边,且有sin2C+3cos(A+B)=0,.当13,4ca,求△ABC的面积。9、在△ABC中,角A、B、C所对边分别为a,b,c,已知11tan,tan23AB,且最长边的边长为l.求:(I)角C的大小;(II)△ABC最短边的长.10、在△ABC中,角A、B、C的对边分别为a、b、c.已知a+b=5,c=7,且.272cos2sin42CBA(1)求角C的大小;(2)求△ABC的面积.12、在ABC中,角ABC、、的对边分别为abc、、,(2,)bcam,(cos,cos)ACn,且mn。⑴求角A的大小;⑵当22sinsin(2)6yBB取最大值时,求角B的大小13、在△ABC中,角A、B、C的对边分别为a、b、c,若).(RkkBCBAACAB(Ⅰ)判断△ABC的形状;(Ⅱ)若kc求,2的值.14、在△ABC中,a、b、c分别是角A、B、C的对边,且coscosBCbac2.(I)求角B的大小;(II)若bac134,,求△ABC的面积.15、(2009全国卷Ⅰ理)在ABC中,内角A、B、C的对边长分别为a、b、c,已知222acb,且sincos3cossin,ACAC求b16、(2009浙江)在ABC中,角,,ABC所对的边分别为,,abc,且满足25cos25A,3ABAC.(I)求ABC的面积;(II)若6bc,求a的值.17、6.(2009北京理)在ABC中,角,,ABC的对边分别为,,,3abcB,4cos,35Ab。(Ⅰ)求sinC的值;(Ⅱ)求ABC的面积.18、(2009全国卷Ⅱ文)设△ABC的内角A、B、C的对边长分别为a、b、c,23cos)cos(BCA,acb2,求B.19、(2009安徽卷理)在ABC中,sin()1CA,sinB=13.(I)求sinA的值,(II)设AC=6,求ABC的面积.20、(2009江西卷文)在△ABC中,,,ABC所对的边分别为,,abc,6A,(13)2cb.(1)求C;(2)若13CBCA,求a,b,c.21、(2009江西卷理)△ABC中,,,ABC所对的边分别为,,abc,sinsintancoscosABCAB,sin()cosBAC.(1)求,AC;(2)若33ABCS,求,ac.22、(2009天津卷文)在ABC中,ACACBCsin2sin,3,5(Ⅰ)求AB的值。(Ⅱ)求)42sin(A的值。23、(2010年高考天津卷理科7)在△ABC中,内角A、B、C的对边分别是a、b、c,若223abbc,sinC=23sinB,则A=(A)30°(B)60°(C)120°(D)150°24.(2010年高考全国2卷理数17)(本小题满分10分)ABC中,D为边BC上的一点,33BD,5sin13B,3cos5ADC,求AD25.(2010年高考浙江卷理科18)在ABC中,角A,B,C所对的边分别为a,b,c,已知cos2C=-14。(Ⅰ)求sinC的值;(Ⅱ)当a=2,2sinA=sinC,求b及c的长。26、(2010年高考广东卷理科16)已知函数()sin(3)(0,(,),0fxAxAx在12x时取得最大值4.(1)求()fx的最小正周期;(2)求()fx的解析式;(3)若f(23α+12)=125,求sinα.27、(2010年高考安徽卷理科16)(本小题满分12分)设ABC是锐角三角形,,,abc分别是内角,,ABC所对边长,并且22sinsin()sin()sin33ABBB。(Ⅰ)求角A的值;(Ⅱ)若12,27ABACa,求,bc(其中bc)。
本文标题:解三角形专题(高考题)练习【附答案】---副本
链接地址:https://www.777doc.com/doc-4090121 .html