您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 高一数学正弦定理 苏教版
正弦定理ABC3C2C1CBC的长度与角A的大小有关吗?三角形中角A与它的对边BC的长度是否存在定量关系?在Rt△ABC中,各角与其对边的关系:caAsincbBsin1sinC不难得到:CcBbAasinsinsinCBAabccc在非直角三角形ABC中有这样的关系吗?AcbaCB正弦定理:在一个三角形中,各边和它所对角的正弦的比相等.CcBbAasinsinsin即(1)若直角三角形,已证得结论成立.bADcADCBsin,sin所以AD=csinB=bsinC,即,sinsinCcBb同理可得,sinsinCcAaCcBbAasinsinsin即:DAcbCB图1过点A作AD⊥BC于D,此时有证法1:(2)若三角形是锐角三角形,如图1,由(1)(2)(3)知,结论成立.CCbADsinsin)(且CcBbAasinsinsin仿(2)可得D(3)若三角形是钝角三角形,且角C是钝角如图2,此时也有cADBsin交BC延长线于D,过点A作AD⊥BC,CAcbB图2AasinBbsinCcsin==(2R为△ABC外接圆直径)=2R思考求证:证明:OC/cbaCBARCcRcCCCCCBA2sin2sinsin,90''RCcBbAaRBbRAa2sinsinsin2sin,2sin同理作外接圆O,过B作直径BC/,连AC/,AcbCBDa向量法证法2:利用向量的数量积,产生边的长与内角的三角函数的关系来证明.剖析定理、加深理解正弦定理可以解决三角形中哪类问题:①已知两角和一边,求其他角和边.②已知两边和其中一边的对角,求另一边的对角,进而可求其他的边和角.CcBbAasinsinsin定理的应用例1在△ABC中,已知c=10,A=45。,C=30。求a,b(精确到0.01).解:且105C)(A180B∵CcBbsinsin∴b=CBcsinsin19.32=30sin105sin10已知两角和任意边,求其他两边和一角CcAasinsin∵∴a=CAcsinsin14.14=21030sin45sin10BACabc)26(5在△ABC中,已知A=75°,B=45°,c=求a,b.23在△ABC中,已知A=30°,B=120°,b=12求a,c.[a=,c=]3434[]3233ba练习42675sin例2证明:∵用正弦定理证明三角形面积BacAbcCabSABCsin21sin21sin21BACDabcaABCahS21而CbBcADhasinsin∴CabBacSABCsin21sin21同理∴BacAbcCabSABCsin21sin21sin21haAbcSABCsin21例3已知a=16,b=,A=30°.求角B,C和边c已知两边和其中一边的对角,求其他边和角解:由正弦定理BbAasinsin得231630sin316sinsinaAbB所以B=60°,或B=120°当时B=60°C=90°.32cC=30°.16sinsinACac316当B=120°时B16300ABC16316变式:a=30,b=26,A=30°求角B,C和边c300ABC2630解:由正弦定理BbAasinsin得30133030sin26sinsinaAbB所以B=25.70,或B=1800-25.70=154.30由于154.30+3001800故B只有一解(如图)C=124.30,57.49sinsinACac30137.25sin变式:a=30,b=26,A=30°求角B,C和边c300ABC2630解:由正弦定理BbAasinsin得30133030sin26sinsinaAbB所以B=25.70,C=124.30,57.49sinsinACac30137.25sin∵ab∴AB,三角形中大边对大角已知两边和其中一边的对角,求其他边和角1.根据下列条件解三角形(1)b=13,a=26,B=30°.[B=90°,C=60°,c=]313(2)b=40,c=20,C=45°.练习注:三角形中角的正弦值小于1时,角可能有两解无解课堂小结(1)三角形常用公式:(2)正弦定理应用范围:①已知两角和任意边,求其他两边和一角②已知两边和其中一边的对角,求另一边的对角。(注意解的情况)正弦定理:ABC111sinsinsin222ABCSabCbcAacBsinsinsinabcABC=2R已知两边和其中一边的对角,求其他边和角时,三角形什么情况下有一解,二解,无解?课后思考
本文标题:高一数学正弦定理 苏教版
链接地址:https://www.777doc.com/doc-4098090 .html