您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > y=ax2+bx+c的图像与性质
请准备好你的数学课本、笔记本以及学习用具等。一般地,抛物线y=a(x-h)+k与y=ax的相同,不同22形状位置y=ax2y=a(x-h)+k2上加下减左加右减抛物线y=a(x-h)2+k有如下特点:1.当a﹥0时,开口,当a﹤0时,开口,向上向下2.对称轴是;3.顶点坐标是。直线X=h(h,k)二次函数开口方向对称轴顶点坐标y=2(x+3)2+5y=-3x(x-1)2-2y=4(x-3)2+7y=-5(2-x)2-6直线x=–3直线x=1直线x=2直线x=3向上向上向下向下(-3,5)(1,-2)(3,7)(2,-6)如何画出的图象呢?216212xxy我们知道,像y=a(x-h)2+k这样的函数,容易确定相应抛物线的顶点为(h,k),二次函数也能化成这样的形式吗?216212xxy22.1.4二次函数y=ax2+bx+c图象和性质xyo1、会用公式法和配方法求二次函数一般式y=ax2+bx+c的顶点坐标、对称轴;2、熟记二次函数y=ax2+bx+c的顶点坐标公式;3、会画二次函数一般式y=ax2+bx+c的图象。怎样把函数转化成y=a(x-h)2+k的形式?函数y=ax²+bx+c的图象用配方法。216212xxy配方216212xxyy=—(x―6)+3212你知道是怎样配方的吗?(1)“提”:提出二次项系数;(2)“配”:括号内配成完全平方;(3)“化”:化成顶点式。老师提示:配方后的表达式通常称为配方式或顶点式直接画函数的图象216212xxy4212212xx提取二次项系数42363612212xx配方66212x整理.36212x化简:去掉中括号解:216212xxy根据顶点式确定开口方向,对称轴,顶点坐标.x…3456789………36212xy列表:利用图像的对称性,选取适当值列表计算.…7.553.533.557.5…∵a=0,∴开口向上;对称轴:直线x=6;顶点坐标:(6,3).直接画函数的图象216212xxy21直接画函数的图象216212xxy描点、连线,画出函数图像.●●●●●●●(6,3)Ox5510216212xxy36212xy问题:1.看图像说说抛物线的增减性。2.怎样平移抛物线可以得到抛物线?216212xxy216212xxy221xy二次函数y=—x-6x+21图象的画法:(1)“化”:化成顶点式;(2)“定”:确定开口方向、对称轴、顶点坐标;(3)“画”:列表、描点、连线。212求次函数y=ax²+bx+c的对称轴和顶点坐标.函数y=ax²+bx+c的顶点是配方:cbxaxy2ccxabxa2提取二次项系数acababxabxa22222配方:加上再减去一次项系数绝对值一半的平方222442abacabxa整理:前三项化为平方形式,后两项合并同类项.44222abacabxa化简:去掉中括号这个结果通常称为求顶点坐标公式.224.24bacbyaxaa公式为:归纳总结:•一般地,我们可以用配方法将配方成abacabxaacababxabxaacxabxa44)2()2()2()(222222cbxaxy2由此可见函数的图像与函数的图像的形状、开口方向均相同,只是位置不同,可以通过平移得到。﹙1﹚二次函数(a≠0)的图象是一条;cbxaxy2﹙2﹚对称轴是直线;顶点坐标是()抛物线x=ab2abacab44,2226.1.3.1二次函数的图像人教版九年级下册第26章《二次函数》cbxaxy2二次函数y=ax2+bx+c(a≠0)的图象和性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值抛物线顶点坐标对称轴位置开口方向增减性最值y=ax2+bx+c(a0)y=ax2+bx+c(a0)由a,b和c的符号确定由a,b和c的符号确定向上向下在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.根据图形填表:abacab44,22abacab44,22abx2直线abx2直线abacabx44,22最小值为时当abacabx44,22最大值为时当1.写出下列抛物线的开口方向、对称轴及顶点坐标.当x为何值时y的值最小(大)?xxy232xxy228822xxy34212xxy(4)(3)(2)(1)练习解:(1)a=30抛物线开口向上21233x顶221433y顶11,33顶点坐标为13x对称轴1133xy最小值当时,=-解:a=-10抛物线开口向下2121x顶22141y顶1,1顶点坐标为1x对称轴11xy最大值当时,=xxy22(2)解:a=-20抛物线开口向下8222x顶24288042y顶2,0顶点坐标为2x对称轴20xy最大值当时,=8822xxy(3)解:a=0.50抛物线开口向上4420.5x顶240.534540.5y顶4,5顶点坐标为4x对称轴45xy最小值当时,=-34212xxy(4)例1:指出抛物线:254yxx的开口方向,求出它的对称轴、顶点坐标、与y轴的交点坐标、与x轴的交点坐标。并画出草图。对于y=ax2+bx+c我们可以确定它的开口方向,求出它的对称轴、顶点坐标、与y轴的交点坐标、与x轴的交点坐标(有交点时),这样就可以画出它的大致图象。∵a=-1<0,∴开口向下,顶点坐标(2.5,9/4),与y轴交点坐标为(0,-4),与x轴交点为(1,0)、(4,0),方法归纳配方法1公式法2单击添加文字内容3①y=2x2-5x+3③y=(x-3)(x+2)②y=-x2+4x-9求下列二次函数图像的开口、顶点、对称轴21请画出草图:3-9-61.抛物线y=2x2+8x-11的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限2.不论k取任何实数,抛物线y=a(x+k)2+k(a≠0)的顶点都在()A.直线y=x上B.直线y=-x上C.x轴上D.y轴上3.若二次函数y=ax2+4x+a-1的最小值是2,则a的值是()A.4B.-1C.3D.4或-1CBA4.若把抛物线y=x2-2x+1向右平移2个单位,再向下平移3个单位,得抛物线y=x2+bx+c,则()A.b=2c=6B.b=-6,c=6C.b=-8c=6D.b=-8,c=18B5.若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx-3的大致图象是()6.在同一直角坐标系中,二次函数y=ax2+bx+c与一次函数y=ax+c的大致图象可能是()xyoxyoxyoxyoABCD-3-3-3-3xyoxyoxyoxyoABCDCC衷心感谢亲爱的老师和同学们!祝福您们开心每一天!再见,作业P14习题26.1第6题归纳知识点:抛物线y=ax2+bx+c的符号问题:(1)a的符号:由抛物线的开口方向确定开口向上a0开口向下a0(2)C的符号:由抛物线与y轴的交点位置确定:交点在x轴上方c0交点在x轴下方c0经过坐标原点c=0演示(3)b的符号:由对称轴的位置确定:对称轴在y轴左侧a、b同号对称轴在y轴右侧a、b异号对称轴是y轴b=0(4)b2-4ac的符号:由抛物线与x轴的交点个数确定:与x轴有两个交点b2-4ac0与x轴有一个交点b2-4ac=0与x轴无交点b2-4ac0归纳知识点:抛物线位置与系数a,b,c的关系:归纳知识点:抛物线y=ax2+bx+c的符号问题:(5)a+b+c的符号:由x=1时抛物线上的点的位置确定(6)a-b+c的符号:由x=-1时抛物线上的点的位置确定你还可想到啥?例8已知如图是二次函数y=ax2+bx+c的图象,判断以下各式的值是正值还是负值.(1)a;(2)b;(3)c;(4)b2-4ac;(5)2a+b;(6)a+b+c;(7)a-b+c.分析:已知的是几何关系(图形的位置、形状),需要求出的是数量关系,所以应发挥数形结合的作用.解:(1)因为抛物线开口向下,所以a<0;判断a的符号(2)因为对称轴在y轴右侧,所以02ba,而a<0,故b>0;判断b的符号(3)因为x=0时,y=c,即图象与y轴交点的坐标是(0,c),而图中这一点在y轴正半轴,即c>0;判断c的符号2404acba240acb240bac(4)因为顶点在第一象限,其纵坐标,且a<0,所以,故。判断b2-4ac的符号,且a<0,所以-b>2a,故2a+b<0;(5)因为顶点横坐标小于1,即12ba判断2a+b的符号(6)因为图象上的点的横坐标为1时,点的纵坐标为正值,即a·12+b·1+c>0,故a+b+c>0;判断a+b+c的符号(7)因为图象上的点的横坐标为-1时,点的纵坐标为负值,即a(-1)2+b(-1)+c<0,故a-b+c<0.判断a-b+c的符号函数y=ax²+bx+c的图象和性质:顶点坐标:对称轴:开口向上向下a0a0增减性x-2abx-2abx-2abx-2ab最值当x=-时,2aby有最小值:4a4ac-b2当x=-时,2aby有最大值:4a4ac-b2直线x=-2ab4a4ac-b2-2ab(,)1.抛物线y=2x2+8x-11的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限2.不论k取任何实数,抛物线y=a(x+k)2+k(a≠0)的顶点都在()A.直线y=x上B.直线y=-x上C.x轴上D.y轴上3.若二次函数y=ax2+4x+a-1的最小值是2,则a的值是()•A4B.-1C.3D.4或-1CBA4.若二次函数y=ax2+bx+c的图象如下,与x轴的一个交点为(1,0),则下列各式中不成立的是()A.b2-4ac0B.0C.a+b+c=0D.01xyo-15.若把抛物线y=x2-2x+1向右平移2个单位,再向下平移3个单位,得抛物线y=x2+bx+c,则()A.b=2c=6B.b=-6,c=6C.b=-8c=6D.b=-8,c=18BB-2ab4a4ac-b26.若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx-3的大致图象是()7.在同一直角坐标系中,二次函数y=ax2+bx+c与一次函数y=ax+c的大致图象可能是()xyoxyoxyoxyoABCD-3-3-3-3xyoxyoxyoxyoABCDCC二次函数y=ax2+bx+c(a≠0)的图象和性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值抛物线顶点坐标对称轴位置开口方向增减性最值y=ax2+bx+c(a0)y=ax2+bx+c(a0)由a,b和c的符号确定由a,b和c的符号确定向上向下在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.根据图形填表:abacab44,22abacab44,22abx2直线abx2直线abacabx44,22最小值为时当abacabx44,22最大值为时当本节课我们学习了哪些知识?你还有哪些困惑?1.用配方法求二次函数y=-2x2-4x+1的顶点坐标.(50分)2.用两种方法求二次函数y=3x2+2x的顶点坐标.(50分)(五)、学习回顾:抛物线开口方
本文标题:y=ax2+bx+c的图像与性质
链接地址:https://www.777doc.com/doc-4101134 .html