您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 等差数列求和公式课件(演示)
泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世界七大奇迹之一。陵寝以宝石镶饰,图案之细致令人叫绝。传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见上图),奢靡之程度,可见一斑。你知道这个图案一共耗费了多少宝石吗?高斯答:1+2+3+4+…+97+98+99+100=1+100=101101×50=50502+99=1013+97=101……50+51=10150501+2+3+4+…+97+98+99+100=?情景高斯(1777---1855),德国数学家、物理学家和天文学家。他和牛顿、阿基米德,被誉为有史以来的三大数学家。有“数学王子”之称。实际上高斯解决了求等差数列1,2,3,4,…n,…前100项的和的问题定义一般的,我们称a1+a2+a3+…+an为数列{an}的前n项和,用Sn表示,即Sn=a1+a2+a3+…+an如何求等差数列1,2,3,4,…n,…前n项的和?sn=1+2+3+…+(n-1)+nsn=n+(n-1)+(n-2)+…+2+1∴2sn=(n+1)+(n+1)+…+(n+1)=n(n+1)2)1()1(321nnnn思考:这种方法能否推广到求一般等差数列前n项求和呢?+)——倒序相加法求等差数列1,2,3,…n,…前n项的和?由Sn=a1+a2+a3+…+an-1+anSn=an+an-1+an-2+…+a2+a1+)2Sn=(a1+an)+(a2+an-1)+…+(an+a1)=n(a1+an)2)(1nnaanS倒序相加法故等差数列的前n项求和公式:探究发现?nnan如何求等差数列的前项和Sdnaan)1(1dnnnaSn2)1(1方法2:等差数列{an}a1,a2,a3,…,an,…的公差为d.])1([)(111dnadaaSn])1([)(dnadaaSnnnn)(21nnaanS2)(1nnaanSdnaan)1(1dnnnaSn2)1(1观察公式的形式,回忆我们所学过的知识,你是否发现了什么?它的形式是不是跟我们学过的梯形面积公式相同?例1:2000年11月14日教育部下发了《关于小学“校校通”工程的通知.某市据此提出了实施“校校通”工程的总目标:从2001年起用10年的时间,在全市中小学建成不同标准的校园网.据测算,2001年该市用于“校校通”工程的经费为500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2001年起的未来10年内,该市在“校校通”工程的总投入是多少?学以致用总结:实际问题,建立数学模型,利用数学的观点解决问题,然后再回归问题实际解:根据题意,从2001-2010年,该市每年投入“校校通”工程的经费都比上一年增加50万元,所以,可以建立一个等差数列{an},表示从2001年起各年投入的资金,其中,a1=500,d=50那么,到2010年(n=10),投入的资金总额为)万元(7250502)110(105001010S答:从2001-2010年,该市在“校校通”工程中的总投入是7250万元.练习:根据下列各题中的条件,求相应的等差数列的前n项和nanS答案:888S根据条件,选择公式184,18,8aan例2公式应用已知等差数列{an}前10项的和是310,前20项的和是1220.由这些条件能确定这个等差数列的前n项和的公式吗?列方程组,解方程解:由题意知将它们代入公式得到方程组,解这个方程组,得到:所以1020310,1220SS1(1)2nnnSnad111045310201901220adad14,6adnnnnnSn362)1(42练习:已知一个等差数列前5项和是25,第六项是11,求此等差数列前n项和公式答案:nSn根据条件,选择公式2等差数列前n项和公式的推导:”“,,,,:1知三求二五个元素nnSdnaa倒序相加法类比思想、方程思想、数学建模思想,整体思想数学思想:等差数列前n项和公式的应用:课后作业必做题:课本P46习题[A组]2、6题选做题:(1)请你把其它不同推导等差数列的前n项和的公式方法写出来。(2)根据习题2.3第6题,自己再设计一个题目(提示:根据条件上的变化,或利用等差数列的性质等)并自己解答预习:本节后半部分知识
本文标题:等差数列求和公式课件(演示)
链接地址:https://www.777doc.com/doc-4103896 .html