您好,欢迎访问三七文档
[知识重温]一、必记6●个知识点1.公式法求和使用已知求和公式求和的方法,即等差、等比数列或可化为等差等比数列的求和方法.2.裂项相消法求和把数列的通项拆分为两项之差,使之在求和时产生前后相互抵消的项的求和方法.3.错位相减法求和(1)适用的数列:{anbn},其中数列{an}是公差为d的等差数列,{bn}是公比为q≠1的等比数列.(2)方法:设Sn=a1b1+a2b2+…+anbn(*),则qSn=a1b2+a2b3+…+an-1bn+anbn+1(**),(*)-(**)得:(1-q)Sn=a1b1+d(b2+b3+…+bn)-anbn+1,就转化为根据公式可求的和.4.倒序相加法求和如果一个数列{an}与首末两端等“距离”的两项的和等于首末两项之和,可把正着写与倒着写的两个式子相加,就得到一个常数列的和,那么求这个数列的前n项和即可用倒序相加法,例如等差数列的前n项和公式即是用此法推导的.5.分组求和法求和若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化求和法,分别求和而后相加减.例如已知an=2n+(2n-1),求Sn.6.并项求和法求和把数列中的若干项结合到一起,形成一个新的可求和的数列,此时,数列中的项可能正、负相间出现或呈现周期性.形如an=(-1)nf(n)类型,可采用两个项合并求解.例如:Sn=1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22-12)=(100+99)+(98+97)+…+(2+1)=5050.二、必明2●个易误点1.使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点.2.在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[小题热身]1.(2018·重庆第一次适应性测试)在数列{an}中,an+1-an=2,a2=5,则{an}的前4项和为()A.9B.22C.24D.32解析:依题意得,数列{an}是公差为2的等差数列,a1=a2-2=3,因此数列{an}的前4项和等于4×3+4×32×2=24,选C.答案:C2.(2018·江西新余三校联考)数列{an}的通项公式是an=(-1)n(2n-1),则该数列的前100项之和为()A.-200B.-100C.200D.100解析:根据题意有S100=-1+3-5+7-9+11-…-197+199=2×50=100,故选D.答案:D3.函数f(x)=x2x-1,求f12019+f22019+f32019+…+f20182019的值为()A.2018B.2019C.1008D.1009解析:∵f(x)=x2x-1∴f(1-x)=1-x21-x-1=1-x1-2x=x-12x-1∴f(x)+f(1-x)=1∴倒序相加得f12019+f22019+f32019+…+f20182019=1009.答案:D4.(2018·广东省五校协作体第一次诊断考试)数列{an}满足a1=1,且an+1=a1+an+n(n∈N*),则1a1+1a2+…+1a2016等于()A.40322017B.40282015C20152016D.20142015解析:由a1=1,an+1=a1+an+n可得an+1-an=n+1,利用累加法可得an-a1=n-1n+22,所以an=n2+n2,所以1an=2n2+n=21n-1n+1,故1a1+1a2+…+1a2016=211-12+12-13+…+12016-12017=21-12017=40322017,选A.答案:A5.已知数列{an}的前n项和为Sn且an=n·2n,则Sn=________.解析:Sn=1×2+2×22+3×23+…+n×2n,①所以2Sn=1×22+2×23+3×24+…+n×2n+1,②①-②得-Sn=2+22+23+…+2n-n×2n+1=2×1-2n1-2-n×2n+1,所以Sn=(n-1)2n+1+2.答案:(n-1)2n+1+26.(2017·新课标全国卷Ⅱ)等差数列{an}的前n项和为Sn,a3=3,S4=10,则k=1n1Sk=________.2nn+1解析:设等差数列{an}的公差为d,则由a3=a1+2d=3,S4=4a1+4×32d=10,得a1=1,d=1.∴an=n.∴Sn=n×1+nn-12×1=nn+12,1Sn=2nn+1=21n-1n+1.∴k=1n1Sk=1S1+1S2+1S3+…+1Sn=21-12+12-13+13-14+…+1n-1n+1=21-1n+1=2nn+1.答案:2nn+1考向一分组法求和[互动讲练型][例1](2016·北京卷)已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{an}的通项公式;(2)设cn=an+bn,求数列{cn}的前n项和.解析:(1)设等比数列{bn}的公比为q,则q=b3b2=93=3,所以b1=b2q=1,b4=b3q=27,所以bn=3n-1(n=1,2,3,…).设等差数列{an}的公差为d.因为a1=b1=1,a14=b4=27,所以1+13d=27,即d=2.所以an=2n-1(n=1,2,3,…).(2)由(1)知an=2n-1,bn=3n-1,因此cn=an+bn=2n-1+3n-1.从而数列{cn}的前n项和Sn=1+3+…+(2n-1)+1+3+…+3n-1=n1+2n-12+1-3n1-3=n2+3n-12.悟·技法分组转化法求和的常见类型(1)若an=bn±cn,且{bn},{cn}为等差或等比数列,可采用分组求和法求{an}的前n项和.(2)通项公式为an=bn,n为奇数,cn,n为偶数的数列,其中数列{bn},{cn}是等比数列或等差数列,可采用分组求和法求和.提醒:某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.[变式练]——(着眼于举一反三)1.(2018·沈阳市教学质量检测一)已知数列{an}是等差数列,满足a1=2,a4=8,数列{bn}是等比数列,满足b2=4,b5=32.(1)求数列{an}和{bn}的通项公式;(2)求数列{an+bn}的前n项和Sn.解析:(1)设等差数列{an}的公差为d,由题意得d=a4-a13=2,所以an=a1+(n-1)·d=2+(n-1)×2=2n.设等比数列{bn}的公比为q,由题意得q3=b5b2=8,解得q=2.因为b1=b2q=2,所以bn=b1·qn-1=2×2n-1=2n.(2)Sn=n2+2n2+21-2n1-2=n2+n+2n+1-2.考向二错位相减法求和[互动讲练型][例2](2017·天津卷)已知{an}为等差数列,前n项和为Sn(n∈N*),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{an}和{bn}的通项公式;(2)求数列{a2nb2n-1}的前n项和(n∈N*).解析:(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q2+q-6=0,解得q=2或q=-3,又因为q0,所以q=2.所以bn=2n.由b3=a4-2a1,可得3d-a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得an=3n-2.所以,数列{an}的通项公式为an=3n-2,数列{bn}的通项公式为bn=2n.(2)设数列{a2nb2n-1}的前n项和为Tn,由a2n=6n-2,b2n-1=2×4n-1,有a2nb2n-1=(3n-1)×4n,故Tn=2×4+5×42+8×43+…+(3n-1)×4n,4Tn=2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1,上述两式相减,得-3Tn=2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1=12×1-4n1-4-4-(3n-1)×4n+1=-(3n-2)×4n+1-8.得Tn=3n-23×4n+1+83.所以,数列{a2nb2n-1}的前n项和为3n-23×4n+1+83.悟·技法利用错位相减法的解题策略一般地,如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法求和,一般是在和式的两边同乘以等比数列{bn}的公比,然后作差求解.若{bn}的公比为参数(字母),则应对公比分等于1和不等于1两种情况分别求和.[变式练]——(着眼于举一反三)2.(2017·山东卷)已知{an}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{an}的通项公式;(2){bn}为各项非零的等差数列,其前n项和为Sn.已知S2n+1=bnbn+1,求数列bnan的前n项和Tn.解析:(1)设{an}的公比为q,由题意知a1(1+q)=6,a21q=a1q2,又an0,由以上两式联立方程组解得a1=2,q=2,所以an=2n.(2)由题意知S2n+1=2n+1b1+b2n+12=(2n+1)bn+1,又S2n+1=bnbn+1,bn+1≠0,所以bn=2n+1.令cn=bnan,则cn=2n+12n.因此Tn=c1+c2+…+cn=32+522+723+…+2n-12n-1+2n+12n,又12Tn=322+523+724+…+2n-12n+2n+12n+1,两式相减得12Tn=32+12+122+…+12n-1-2n+12n+1,所以Tn=5-2n+52n.考向三裂项相消法求和[分层深化型][例3](2017·新课标全国卷Ⅲ)设数列{an}满足a1+3a2+…+(2n-1)an=2n.(1)求{an}的通项公式;(2)求数列an2n+1的前n项和.解析:(1)因为a1+3a2+…+(2n-1)an=2n,故当n≥2时,a1+3a2+…+(2n-3)an-1=2(n-1),两式相减得(2n-1)an=2,所以an=22n-1(n≥2).又由题设可得a1=2,满足上式,所以{an}的通项公式为an=22n-1.(2)记an2n+1的前n项和为Sn.由(1)知an2n+1=22n+12n-1=12n-1-12n+1,则Sn=11-13+13-15+…+12n-1-12n+1=2n2n+1.悟·技法常见的裂项方法(其中n为正整数)数列裂项方法1nn+k(k为非零常数)1nn+k=1k1n-1n+k14n2-114n2-1=1212n-1-12n+11nn+1n+2121nn+1-1n+1n+21n+n+k1n+n+k=1k(n+k-n)loga1+1na0,a≠1loga1+1n=loga(n+1)-logan[同类练]——(着眼于触类旁通)3.(2018·广西高三适应性测试)已知数列{an}的前n项和Sn=n2,则数列1an+1-1的前n项和Tn=________.解析:∵an=1,n=1,n2-n-12,n≥2=1,n=1,2n-1,n≥2,∴an=2n-1.∴1an+1-1=12n+12-1=141n-1n+1,∴Tn=14
本文标题:5.4数列求和
链接地址:https://www.777doc.com/doc-4108210 .html