您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 二次函数解析式的求法(1PPT课件
二次函数解析式的求法知识要点:二次函数解析式常见的三种表达形式及求法:(1)一般式:根据抛物线过三点坐标求解析式设解析式为(2)顶点式:已知顶点和另一点坐标求解析式设解析式(3)两根式:已知与X轴的两交点坐标及另一点坐标求解析式设解析式y=a(x-x1)(x-x2))0(2acbxaxy二次函数的解析式(1)一般式(2)顶点式(3)两根式)0(2acbxaxy),)0(2)(nmanmxay顶点坐标()0,)(0,2)0)()((2121xxXcbxaxyaxxxxay轴交于两点(与条件:若抛物线)424,2)0(4242)2()0(2abacabaabacabxayacbxaxy顶点坐标为(化成顶点式为:一般式:二,例题讲解:1,若抛物线y=x2-4x+c(1)过点A(1,3)求c(2)顶点在X轴上求c(1)点在抛物线上,将A(1,3)代入解析式求得c=6(2)X轴上的点的特点b2-4ac=0或配方求得:c=42,若抛物线y=ax2+2x+c的对称轴是直线x=2,且函数的最大值是-3,求a,c分析:实质知道顶点坐标(2,-3)且为最高点抛物线开口向下034224222aaaca解:解得521ca3,根据下列条件求二次函数解析式(1)抛物线过点(0,0)(1,2)(2,3)三点解法:抛物线过一般三点通常设一般式将三点坐标代入求出a,b,c的值解:设二次函数解析式为:y=ax2+bx+c则32420cbacbac解得:02521cba所求的抛物线解析式为:xxy25221(2)抛物线顶点是(2,-1)且过点(-1,2)解法(一)可设一般式列方程组求a,b,c解法(二)可设顶点式解:∵抛物线的顶点为(2,-1)∴设解析式为:y=a(x-2)2-1把点(-1,2)代入a(-1-2)2-1=212)2(3131xya所求的解析式为:解得:(3)图象与X轴交于(2,0)(-1,0)且过点(0,-2)解法(一)可设一般式解法(二)可设两根式解:∵抛物线与X轴交于点(2,0)(-1,0)∴设解析式为:y=a(x-2)(x+1)把点(0,-2)代入a(0-2)(0+1)=-2解得a=1∴y=(x-2)(x+1)即:y=x2-x-2(4)图象与X轴交于(2,0)(3,0)且函数最小值是-3分析:函数最小值:-3即顶点纵坐标但隐藏着抛物线开口向上这个条件可设一般式来解.可设两根式来解求得的解析式为:y=12x2-60x+724,练习:求下列二次函数解析式(1)抛物线y=x2-5(m+1)x+2m的对称轴是y轴所求的解析式为:y=x2-2(2)y=(m-3)x2+mx+m+3的最大值是0(3)抛物线y=ax2+bx+c的顶点是(-1,2),且a+b+c+2=0(3)y=ax2+bx+c且a:b:c=2:3:4,函数有最小值423解得:y=4x2+6x+85,完成练习:(求下列二次函数解析式)(1)若抛物线y=(m2-2)x2-4mx+n对称轴是直线x=2,且最高点在直线上121xy解法:可先求出顶点坐标(2,2)再由题意得2)22(42)4()22(42)22(24022mmmnmmm解得:m=-1n=-2即:y=-x2+4x-2(2)若抛物线y=2x2+bx+c过点(2,3)且顶点在直线y=3x-2上解法:可抓住顶点在直线y=3x-2上设抛物线的顶点坐标为(m,3m-2)来解所求得的抛物线解析式为:252)23(212)1(2xyxy或6(1)抛物线y=ax2+bx+c与y=-x2形状相同,对称轴是直线x=3,最高点在直线y=x+1上,求抛物线解析式;(2)若(1)中求得的抛物线的顶点在直线y=x+1上移动到点P时,它与X轴交于(x1,0)(x2,0),且x12+x22=6,求P点坐标Y=-(x-3)2+4Y=-x2+2x+1P(1,2)7已知直线y=kx+b与x轴相交于点A的横坐标为2,与抛物线y=ax2相交于B、C两点,且点B与点P(-1,1)关于y轴对称.(1)求直线和抛物线的解析式;(2)若抛物线上有一点D,使S△AOD=S△BOC,求点D的坐标.8已知抛物线y=ax2+bx+c与直线y=kx+4相交于点A(1,m),B(4,8),与x轴交于坐标原点O和点C.(1)求直线和抛物线解析式.(2)在x轴上方的抛物线是否存在D点,使得S△OCD=S△OCB.若存在,求出所有符合条件的点;若不存在,说明理由.(1)y=x+4y=-x2+6x(2)D(2,8)小结(1)二次函数解析式的三种表示形式(1)一般式(2)顶点式(3)交点式)0(2acbxaxy),)0(2)(nmanmxay顶点坐标()0,)(0,2)0)()((2121xxXcbxaxyaxxxxay轴交于两点(与条件:若抛物线(2)求二次函数解析式时图象过一般三点:常设一般式知顶点坐标:常设顶点式知抛物线与X轴的两交点常设两根式1。如果抛物线y=x2-6x+c-2的顶点到x轴的距离是3,那么c的值等于()(A)8(B)14(C)8或14(D)-8或-142。二次函数y=x2-(12-k)x+12,当x1时,y随着x的增大而增大,当x1时,y随着x的增大而减小,则k的值应取()(A)12(B)11(C)10(D)93。若y=x2+bx-1,则二次函数的图象的顶点在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限4。已知二次函数的图象过原点则a的值为——5。已知二次函数的图象与X轴有两个交点,则a的取值范围是————6。抛物线y=(k-1)x2+(2-2k)x+1,那么此抛物线的对称轴是直线_________,它必定经过________和____7。若为二次函数的图象上的三点,则y1,y2,y3的大小关系是()A.B.C.D.8.抛物线y=(k2-2)x2-4kx+m的对称轴是直线x=2,且它的最低点在直线y=-kx+2上,求函数解析式。9.y=ax2+bx+c图象与x轴交于点A、点B,与y轴交于点C,OA=2,OB=1,OC=1,求函数解析式10。若抛物线的顶点在x轴的下方,则的取值范围是()Aa1.B.A1C.D.11.(天津市)已知二次函数的图象如图所示,下列结论:①abc0;②ba+c;③4a+2b+c0;④2c3b;⑤a+bm(am+b),(的实数).其中正确的结论序号有()12.已知二次函数,其中满足和,则该二次函数图象的对称轴是直线——-.周五放假注意事项1。回家乘坐营运车辆,不得走亲访友。2。在家注意安全:烤火防煤气中毒,防火灾。防触电,防食品中毒。不得在河边塘边玩耍,防溺水。3。预防流行性感冒,回家买抗病毒颗粒和板蓝根冲剂预防。4。在家中完成假期作业,加强复习,准备期末考试。元山中学九年级四班2018年1月12日
本文标题:二次函数解析式的求法(1PPT课件
链接地址:https://www.777doc.com/doc-4115720 .html