您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2018秋华师大版八年级数学上最新版全部教案
1华师大八年级(上)数学教案2第11章数的开方第1课时平方根(1)教学目标1,了解数的平方根的概念,会求某些非负数的平方根。2,会用根号表示一个数的平方根、教学过程一、复习引入1、我们已学过哪些数的运算?(加、减、乘、除、乘方5种)2、加法与减法这两种运算之间有什么关系?乘法与除法之间呢?(均为互逆运算)3、一个正方形的边长是5米,它的面积是多少?其运算是什么运算?(面积25平方米,运算是乘方运算)二、创设问题情境,解决问题1、请同学们欣赏本章导图,如果要剪出一块面积为25cm2的正方形纸片,纸片的边长应是多少?这个问题实质上就是要找一个数,这个数的平方等于25、2.提出问题,探索解决问题的办法、(1)平方根的概念;如果一个数的平方等于a,那么这个数叫做a的平方根、问:有了这个规定以后,a是什么数?让学生思考、交流后回答:a是非负数、(2)在上述问题中,因为52=25,所以5是25的一个平方根、问:25的平方根只有一个吗?还有没有别的数的平方也等于25?(因为(-5)2=52=25,所以-5也是25的一个平方根)从上述解决问题过程中,你能总结一下求一个数的平方根的方法吗?(根据平方根的意义,可以利用平方来检验或寻找一个数的平方根)三、范例例1、求100的平方根、提问:(1)你能仿照上述问题解决的方法,求出100的平方根吗?让学生讨论、交流后回答。(2)你能正确书写解题过程吗?请一位同学口述,教师板书。3(3)l0和-l0用±10表示可以吗?试一试(1)144的平方根是什么?(2)0的平方根是什么?(3)425的平方根是什么?(4)0.81的平方根是什么?(5)-4有没有平方根?为什么?请你自己也编三道求平方根的题目,并给出解答、总结四、课堂练习说出下列各数的平方根:1、642、0.253、4981五、小结1、一个正数如果有平方根,那么有几个,它们之间关系如何?2、如果我们知道了两个平方根中的一个,那么是否可以得到它的另一个平方根?为什么?3、0的平方根有几个?是什么数?4、负数有平方根吗?为什么?六、作业习题12.1第1题、教学后记4第2课时平方根(2)教学目标1、了解数的算术平方根的概念,会用根号表示一个数的算术平方根。2、了解开方运算与乘方运算是逆运算,会利用这个互逆关系求某些非负数的算术平方根。3、会利用开方运算求某些非负数的平方根、教学过程一、创设问题情境1、什么是平方根?求出36,1.44,81625各数的平方根、2、一个正数如果有平方根,那么有几个?它们之间的关系如何?3、负数有平方根吗?为什么?二、算术平方根的概念及其应用1、算术平方根概念。正数a的正的平方根,叫做a的算术平方根,记作a,读作“根号a”;另一个平方根是它的相反数,即-a。因此正数a平方根可以记作±a,a称为被开方数、例如3表示3的算术平方根,±3表示3的平方根、提问:(1)有了这个规定之后,a是什么数?a是什么数?让学生讨论、交流,归纳得到结论:a是非负数;a是非负数、也就是说,当式子a有意义时,它一定表示一个非负数,即a≥0时它有意义、例:-3有意义吗?(2)算式平方根与平方根有什么联系和区别?求一个非负数的平方根的运算,叫做开平方、开方运算与平方运算互为逆运算、将一个正数开平方,关键是找出它的一个算术平方根、例如100的算术平方根是100=10,100的平方根是±100=±l0、2、范例、例2、将下列各数开平方;(1)49(2)1.69按照题(1)的方法,解决题(2),让学生明确开方运算与平方运算是互为逆运算,能5够利用这个互逆运算关系求出某些非负数的算术平方根,进而求出平方根、问题:在例l,例2中,他们通过观察,利用开方与平方的关系来开平方的,如果被开方数比较复杂,如1225,44.81等,那么如何进行计算呢?例3、用计算器求下列各数的算术平方根:1、5292、12253、44.81教学要点:(1)让学生动手操作,并交流计算结果,总结用计算器求一个非负数的算术平方根按健顺序、(2)阅读课本解题过程、三、课堂练习P5练习2,3、四、小结1、什么叫算术平方根?2、算术平方根与平方根有什么联系和区别?3、式子a中a应该满足什么条件?4、用计算器求一个非负数的算术平方根,其按健顺序如何?五、作业P7页3(1),4、教学后记6第3课时、立方根教学目标1、了解立方根的概念,会用根号表示一个数的立方根、2、能用立方运算求某些数的立方根,了解开立方与立方互为逆运算。3、会用计算器求立方根、教学过程一、创设问题情境,引入立方根概念现有一只体积为216cm3的正方体纸盒,它的每一条棱长是多少?与“平方根”类似,让学生讨论和研究以下问题:问题1这个实际问题,在数学上提出怎样的一个计算问题?问题2你能找一个数,使这个数的立方等于216吗?问题3从这里可以抽象出一个什么数学概念?二、试一试让学生讨论以下问题1、27的立方根是什么?2、-27的立方根是什么?3、0的立方根是什么?让学生对以上问题逐一作答,教师作正确判断,并请同学自己也编三道求立方根的题目,并给出解答。根据以上题目的答案,回答以下问题:1、正数有几个立方根?2、0有几个立方根?3、负数有几个立方根?4、从以上问题中你发现了什么?(每一个数只有一个立方根)三、立方根的表示法任何数(正数、负数或零)的立方根如果存在的话,必定只有一个、数a的立方根,记作3a,读作“三次根号a”。a称为被开方数,3称为根指数。例如x3=6,则x是6的立方根,即x=36;而23=8,则2是8的立方根,即38=2。数a的平方根和立方根相同吗?7学生讨论后回答,教师归纳为:0的平方根和立方根都是0,不为0的数的平方根和立方根不同。求一个数的立方根的运算,叫做开立方。四、例题例1、求下列各数的立方根;(1)64(2)-125(3)-0.008教学要求上可以借助立方运算来求立方根,2、可以用立方运算来检验开立方是否正确;3、按照第一小题的方法,要求学生解决题(2)和题(3)、让学生讨论、研究以下问题;1、32表示2的立方根,那么(32)3等于多少呢?323又等于多少呢?2、3a表示a的立方根,那么(3a)3等于多少呢?3a3又等于多少呢?例2、用计算器求下列各数的立方根;(1)1331(2)-343(3)9.263(精确到0.01)教学要点:(1)指出用计算器求一个有理数的立方根,只需要按书写顺序按键。若被开方数为负数,“一”号的输入可以按(-),也可以按-、(2)对于第(2)小题,可引导学生用减号代替负号,或将被开方数加上括号试一试,看看是否计算出相同的结果、五、课堂练习P7练习1、2、六、小结1、什么叫立方根?如何用根号表示一个数的立方根?2、什么叫开立方?如何求一个数的立方根?举例说明、3、(3a)3等于什么?3a3等于什么?4、正数,0,负数的立方根有何特点?七、作业习题12.1第2,3(2),5题、教学后记8第4课时实数与数轴(1)教学目标1、了解实数的意义,能对实数进行分类。2、了解数轴上的点与实数一一对应,能用数轴上的点表示无理数。3、会估计两个实数的大小。教学过程一、创设问题情境,导入实数的概念问题l用什么方法求2?其结果如何?问题2你能利用平方关系验算所得结果吗?问题3验证的结果并不是2,而是接近于2,这说明了什么问题?问题4如果用计算机计算2,结果如何呢?让学生阅读P15页计算结果,并指出;在数学上已经证明,没有一个有理数的平方等于2,也就是说2不是有理数.有兴趣的同学可以看一看第18页的阅读材料.问题5那么,2是怎样的数呢?1.回顾有理数的概念.(1)有理数包括________和________(2)请你随意写出三个分数,将它化成小数,看一看结果。(3)由此你可以得到什么结论?(任何一个分数写成小数的形式,必定是有限小数或者无限循环小数)2.无理数的概念与有理数进行比较,2计算的结果是无限不循环小数,所以2不是有理数。提问:还有没有其他的数不是有理数?为什么?无限不循环小数叫做无理数.例如2、3、5、∏、35都是无理数.有理数与无理数统称为实数.二、试一试问题1按照计算器显示的结果,你能想像出2在数轴上的位置吗?9问题2你能在数轴上找到表示2的点吗?请同学们准备两个边长为1的正方形纸片,分别沿它的对角线剪开,得到四个什么三角形?如果把四个等腰直角形拼成一个大的正方形,其面积为多少?其边长为多少?是2.利用这就是说,边长为1的正方形的对角线长这个事实,我们容易画出表示2的点,如图所示.三、反思提高问题1如果将所有有理数都标到数轴上,那么数轴被填满了吗?问题2如果再将所有无理数都标到数轴上,那么数轴被填满了吗?让学生充分思考交流后,引导学生归结为:如果将所有有理数都标到数轴上,数轴未被填满;如果再将所有无理数都标到数轴上,那么数轴被填满。数轴上的任一点必定表示一个实数;反过来,每一个实数(有理数或无理数)也都可以用数轴上的点来表示,即实数与数轴上的点一一对应。四、范例例1.试估计3+2与∏的大小关系。说明:正实数的大小比较和运算,通常可取它们的近似值来进行。提问:若将本题改为:试估计-(3+2)与-∏的大小关系,如何解答?让学生动手解答,并请一位同学板演,教师讲评.五、课堂练习P11练习1(1),3.六、小结1.什么叫做无理数?2.什么叫做实数?3.有理数和数轴上的点一一对应吗?为什么?4.无理数和敷轴上的点一一对应吗?为什么?5.实数与数轴上的点一一对应吗?为什么?七、作业习题12.2中的1教学后记10第5课时实数与数轴(2)教学目标1.了解有理敷的相反数和绝对值等概念、运算法则以及运算律在实数范围内仍然适用.2.能利用运算法则进行简单四则运算.教学过程一、创设问题情境,导入新知1.复习提问(1)用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律。(2)用字母表示有理数的加法交换律和结合律.(3)平方差公式?完全平方公式?(4)有理数a的相反数是什么?不为0的数a的倒数是什么?有理数a的绝对值等于什么?在实数范围内,有关有理数的相反数、倒数和绝对值等概念、大小比较,运算法则及运算律仍然适用。二、范例例1.计算:∏2-|23-32|(结果精确到0.01)分析:对于实数的运算,通常可以取它们的近似值来进行。提问:用什么手段取它们的近似值?例2.计算:(2+1)(2-1)12-33(3+1)2三、课堂练习P11页练习l(2)、2,让四位同学板演,教师根据学生的具体解答情况作出正确判断,并分析发生错误的原因.四、小结由学生完成如下小结:1.在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的11精确度用相应的近似有限小数去代替无理数,再进行计算.2.实数的运算法则a+b=b+a(a+b)+c=a+(b+c)a×b=b×a(a×b)×c=a×(b×c)(a+b)×c=ac+bc五、作业P15页复习题2教学后记第6课时小结与复习教学目标1、进一步巩固实数的开方的有关概念。2、进一步巩固实数的运算法则和运算定律。3.进一步巩固用估算方法来比较两数的大小,利用结算方法求无理数的范围。教学过程一、复习数的开方的有关概念和开方运算让学生阅读数的开方的相关内容并回答以下问题:1.什么叫平方根、算术平方根、立方根?2.开方运算和乘方运算有什么联系?举例说明.练习:P21页复习题12.用计算器求下列各式的值:-561690.00067053-48393418.93.一个圆柱的体积是10m3,且底面圆的直径与圆柱的高相等,求这个圆柱的底面半径(∏取3.14,结果保留2个有效数字)。二、复习估算法问题l:你在生活中使用过估算的方法吗?举例说明。问题2:你能比较下列各组里两个实数的大小吗?(1)-∏,-3.1415926(2)29,5413问题3:你能计算:∏+10-1-23(结果精确到0.01)吗?12三、复习实数的有关概念问题l:什么叫做无理数?什么叫做实数?(无限不循环小数叫无理数;有理数和无理数统称为实数)问题2:实数可以怎样分类?1.按正负数分类,实数可以分为正实数、负实数、0;2.按有理数、无理数
本文标题:2018秋华师大版八年级数学上最新版全部教案
链接地址:https://www.777doc.com/doc-4119148 .html