您好,欢迎访问三七文档
知识回顾:1.任意角的三角函数的单位圆定义:tancossinyxxyoxyP(x,y)三角函数定义域RsincostanR)(2Zkk(x≠0)任意角的三角函数值仅与有关,而与点在角的终边上的位置无关.P2.定义推广:0),(22yxrPyxP与原点的距离点是终边上的任意一点,是一个任意角,设角)0(tan)3(cos)2(sin)1(xxyyxrxrxryry的正切,即叫作的余弦,即叫作的正弦,即叫作那么由三角函数的定义我们知道,对于角α的各种三角函数我们都是用比值来表示的,或者说是用数来表示的,今天我们学习正弦、余弦、正切函数的另一种表示方法——几何表示法新课引入知识探究(一):正弦线和余弦线思考1:如图,设角α为第一象限角,其终边与单位圆的交点为P(x,y),则,都是正数,你能分别用一条线段表示角α的正弦值和余弦值吗?sinycosxP(x,y)OxyM||sinMPy||cosOMx5思考2:若角α为第三象限角,其终边与单位圆的交点为P(x,y),则,都是负数,此时角α的正弦值和余弦值分别用哪条线段表示?sinycosx||sinMPy||cosOMxP(x,y)OxyM为了简化上述表示,我们设想将线段的两个端点规定一个为始点,另一个为终点,使得线段具有方向性,带有正负值符号.根据实际需要,我们规定线段从始点到终点与坐标轴同向时为正方向,反向时为负方向.规定了始点和终点,带有方向的线段,叫做有向线段.由上分析可知,当角α为第一、三象限角时,sinα、cosα可分别用有向线段MP、OM表示,即MP=sinα,OM=cosα,那么当角α为第二、四象限角时,你能检验这个表示正确吗?P(x,y)OxyMP(x,y)OxyM*带有方向的线段叫有向线段.*有向线段的大小称为它的数量.在坐标系中,规定:有向线段的方向与坐标系的方向相同.即同向时,数量为正;反向时,数量为负.定义:设角α的终边与单位圆的交点为P,过点P作x轴的垂线,垂足为M,称有向线段MP,OM分别为角α的正弦线和余弦线.思考:当角α的终边在坐标轴上时,角α的正弦线和余弦线的含义如何?POxyMOxyPP思考:设α为锐角,你能根据正弦线和余弦线说明sinα+cosα1吗?POxyMMP+OMOP=1AT思考1:如图,设角α为第一象限角,其终边与单位圆的交点为P(x,y),则是正数,用哪条有向线段表示角α的正切值最合适?tanyxPOxyMtanyATx(1,0)知识探究(二):正切线AT思考2:若角α为第四象限角,其终边与单位圆的交点为P(x,y),则是负数,此时用哪条有向线段表示角α的正切值最合适?tanyxPOxyMtanyATxATATPOxyM思考3:若角α为第二象限角,其终边与单位圆的交点为P(x,y),则是负数,此时用哪条有向线段表示角α的正切值最合适?tanyxtanyATxtanyx思考4:若角α为第三象限角,其终边与单位圆的交点为P(x,y),则是正数,此时用哪条有向线段表示角α的正切值最合适?POxyMATATtanyATx思考5:根据上述分析,你能描述正切线的几何特征吗?过点A(1,0)作单位圆的切线,与角α的终边或其反向延长线相交于点T,则AT=tanα.ATOxyPATOxyP思考6:当角α的终边在坐标轴上时,角α的正切线的含义如何?OxyPP当角α的终边在x轴上时,角α的正切线是一个点;当角α的终边在y轴上时,角α的正切线不存在.这三条与单位圆有关的有向线段MP、OM、AT,分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线当角α的终边与x轴重合时,正弦线、正切线,分别变成一个点,此时角α的正弦值和正切值都为0;当角α的终边与y轴重合时,余弦线变成一个点,正切线不存在,此时角α的正切值不存在.α的终边αyxA(1,0)POα的终边αyxA(1,0)O三角函数线α的终边αOyxA(1,0)PMTPMTα的终边αyxA(1,0)OPMTMTsinMPcosOMtanAT例1:作出下列各角的正弦线、余弦线、正切线.332(1);(2).32sin54sin3254例2:利用三角函数线比较下列各组数的大小:与2、tan与tan解:如图可知32sin54sin3254tantanyx32的终边54的终边AT’TPP’MM’1、思考:对于不等式(其中α为锐角),你能用数形结合思想证明吗?sintanaaaPOxyMATOATOAPOAPSSS扇形证明:ATOAOAMPOA..21..21..212tansin即ATMP小结作业1.三角函数线是三角函数的一种几何表示,即用有向线段表示三角函数值,是今后进一步研究三角函数图象的有效工具.2.正弦线的始点随角的终边位置的变化而变化,余弦线和正切线的始点都是定点,分别是原点O和点A(1,0).3.利用三角函数线处理三角不等式问题,是一种重要的方法和技巧,也是一种数形结合的数学思想.作业:P17练习2
本文标题:三角函数线
链接地址:https://www.777doc.com/doc-4123451 .html