您好,欢迎访问三七文档
制作人:刘诗悦小组成员:朱元靖,丁超,周泓瑞,金芙瑛,侯舒涵。定义:圆周率,一般以π来表示,是一个在数学及物理学普遍存在的数学常数。它定义为圆形之周长与直径之比。它也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。历史发展:•实验时期一块产于公元前1900年的古巴比伦石匾清楚地记载了圆周率=25/8=3.125。同一时期的古埃及文物也表明圆周率等于分数16/9的平方,约等于3.16。埃及人似乎在更早的时候就知道圆周率了。名著《金英国作家JohnTaylor(1781–1864)在其字塔》中指出,造于公元前2500年左右的金字塔和圆周率有关例如,金字塔的周长和高度之比等于圆周率的两倍,正好等于圆的周长和半径之比。公元前800至600年成文的古印度宗教巨著《百道梵书》(SatapathaBrahmana)显示了圆周率等于分数339/108,约等于3.139。[3]•几何法时期•中国古算书《周髀算经》(约公元前2世纪)的中有“径一而周三”的记载,意即取π=3。[4]汉朝时,张衡得出π的平方除以16等于5/8,即π等于10的开方(约为3.162)。这个值不太准确,但它简单易理解。公元263年,中国数学家刘徽用“割圆术”计算圆周率,他说“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”,包含了求极限的思想。后来发现3.14这个数值还是偏小。于是继续割圆到1536边形,求出3072边形的面积,得到令自己满意的圆周率3927/1250=3.1416。公元480年左右,南北朝时期的数学家祖冲之进一步得出精确到小数点后7位的π值,给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。在之后的800年里祖冲之计算出的π值都是最准确的。其中的密率在西方直到1573年才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。•约在公元530年,印度数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。婆罗门笈多采用另一套方法,推论出圆周率等于10的算术平方根。•阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。分析法时期•这一时期人们开始利用无穷级数或无穷连乘积求π,摆脱可割圆术的繁复计算。无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,使得π值计算精度迅速增加。•鲁道夫·范·科伊伦(约1600年)计算出π的小数点后首35位。•斯洛文尼亚数学家JurijVega于1789年得出π的小数点后首140位,其中只有137位是正确的。这个世界纪录维持了五十年。他利用了JohnMachin于1706年提出的数式。•但是上述的方法都不能快速算出π。第一个快速算法由英国数学家梅钦提出,1706年梅钦计算π值突破100位小数大关,他利用了如下公式:[6]•其中arctan(x)可由泰勒级数算出。类似方法称为“梅钦类公式”。1873年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的。到1948年英国的弗格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。计算机时代•在1976年,新的突破出现了。萨拉明(EugeneSalamin)发表了一条新的公式,那是一条二次收敛算则,也就是说每经过一次计算,有效数字就会倍增。高斯以前也发现了一条类似的公式,但十分复杂,在那没有电脑的时代是不可行的。之后,不断有人以高速电脑结合类似萨拉明的算则来计算π的值。1989年美国哥伦比亚大学研究人员用克雷-2型和IBM-VF型巨型电子计算机计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数,创下最新的纪录。2010年1月7日——法国一工程师将圆周率算到小数点后27000亿位。2010年8月30日——日本计算机奇才近藤茂利用家用计算机和云计算相结合,计算出圆周率到小数点后5万亿位。•2011年10月16日,日本长野县饭田市公司职员近藤茂利用家中电脑将圆周率计算到小数点后10万亿位,刷新了2010年8月由他自己创下的5万亿位吉尼斯世界纪录。今年56岁近藤茂使用的是自己组装的计算机,从去年10月起开始计算,花费约一年时间刷新了纪录。有π的几何公式圆柱底面积:πr*r底面周长:2πr、πd侧面积:πdh、2πrh表面积:2πr*r+πdh、2πrh体积:sh、πr*rh(底面积×高)圆锥底面积:πr*r底面周长:2πr、πd体积:1/3sh、πr*rh扇形面积公式:n/360*πr²(其中n表示该扇形对应的角度)弧长公式:n/180*πr(其中n表示该扇形对应的角度)圆面积:πr*r周长:2πr、πd圆环面积:π(R*R-r*r)周长:2πr、πd祖冲之和圆周率•祖冲之是我国古代伟大的数学家和天文学家。祖冲之于公元429年出生在建康(今江苏南京),他家历代都对天文历法有研究,他从小就接触数学和天文知识,公元464年,祖冲之35岁时,他开始计算圆周率。•在我国古代,人们从实践中认识到,圆的周长是“圆径一而周三有余”,也就是圆的周长是圆直径的三倍多,但是多多少,意见不一。•祖冲之不但精通天文、历法,他在数学方面的贡献,特别对“圆周率”研究的杰出成就,更是超越前代,在世界数学史上放射着异彩。•圆周率的应用很广泛。尤其是在天文、历法方面,凡牵涉到圆的一切问题,都要使用圆周率来推算。我国古代劳动人民在生产实践中求得的最早的圆周率值是“3”,后来,随着天文、数学等科学的发展,研究圆周率的人越来越多了。西汉末年的刘歆首先抛弃“3”这个不精确的圆周率值,他曾经采用过的圆周率是3.547。东汉的张衡也算出圆周率为π=3.1622。这些数值比起π=3当然有了很大的进步,但是还远远不够精密。到了三国末年,数学家刘徽创造了用割圆术来求圆周率的方法,圆周率的研究才获得了重大的进展。从理论上来讲,如果内接正多边形的边数增加到无限多时,那时正多边形的周界就会同圆周密切重合在一起,从此计算出来的内接无限正多边形的面积,也就和圆面积相等了。不过事实上,我们不可能把内接正多边形的边数增加到无限多,只能有限度地增加内接正多边形的边数,使它的周界和圆周接近重合。刘徽从圆内接正六边形开始,逐次加倍地增加边数,一直计算到内接正九十六边形为止,求得了圆周率是3.141024。把这个数化为分数,就是157/50。刘徽所求得的圆周率,后来被称为“徽率”。他这种计算方法,实际上已具备了近代数学中的极限概念。问答•你能背出圆周率后小数点后几位?(每5位小数点给一颗糖!!!)•每年的几月几日为圆周率日?•哪部电影的男主角叫Pi?•π是希腊字母第几个字母•3.141592653589793238462643383279•3月14日•少年派的奇幻漂流•第十六个字母Thankyou!
本文标题:圆周率
链接地址:https://www.777doc.com/doc-4132489 .html