您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 24.2.2 切线长定理和圆内切三角形 (新)
学习要求:1、什么叫切线长?2、切线长定理的内容有哪些?你会证明吗?3、理解三角形的内切圆、内心与外接圆、外心的区别。如何作三角形的内心?如何作三角形的外心?4、认真自学P97的例2,你还有其它方法吗?PBCO切线长:从圆外一点引圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。思考:切线长和切线的区别和联系?小结:切线是直线,不可以度量;切线长是指切线上的一条线段的长,可以度量。pABO已知:求证:如图,P为⊙O外一点,PA、PB为⊙O的切线,A、B为切点,连结POBPOAPOPBPA,切线长定理从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。一、判断(1)过任意一点总可以作圆的两条切线()(2)从圆外一点引圆的两条切线,它们的长相等。练习(1)如图PA、PB切圆于A、B两点,连结PO,则度。50APBAPO25PBOA二、填空(2)如图,ΔABC的内切圆分别和BC,AC,AB切于D,E,F;如果AF=2cm,BD=7cm,CE=4cm,则BC=cm,AC=AB=116cm9cmBDACFE274(3)如图,PA、PB、DE分别切⊙O于A、B、C,DE分别交PA,PB于D、E,已知P到⊙O的切线长为8CM,则ΔPDE的周长为()AA16cmD8cmC12cmB14cmDCBEAP三、综合练习已知:如图PA、PB是⊙O的两条切线,A、B为切点。直线OP交⊙O于D、E,交AB于C。OPABCDE(1)图中互相垂直的关系有对,分别是(2)图中的直角三角形有个,分别是等腰三角形有个,分别是(3)图中全等三角形对,分别是(4)如果半径为3cm,PO=6cm,则点P到⊙O的切线长为cm,两切线的夹角等于度3ABOPPBOBPAOA,,6233360OPABCDE(5)如果PA=4cm,PD=2cm,试求半径OA的长。x222OPOAPA即:解得:x=22224xx3cm半径OA的长为3cm思考如图,一张三角形的铁皮,如何在它上面截下一块圆形的用料,并且使圆的面积尽可能大呢?ID内切圆和内心的定义:与三角形各边都相切的圆叫做三角形的内切圆.内切圆的圆心叫做三角形的内心.三角形的内心是的交点,三角形三条角平分线如何找三角形的外心与内心ABDLMNPO结论:圆的外切四边形的两组对边和相等。已知:四边形ABCD的边AB,BC,CD,DA和圆O分别相切于L,M,N,P。探索圆外切四边形边的关系。C(1)找出图中所有相等的线段(2)填空:AB+CDAD+BC(,,=)=DN=DP,AP=AL,BL=BM,CN=CM比较圆的内接四边形的性质:圆的内接四边形:角的关系圆的外切四边形:边的关系练习四已知:△ABC是⊙O外切三角形,切点为D,E,F。若BC=14cm,AC=9cm,AB=13cm。求AF,BD,CE。ABCDEFxxyyOzz解:设AF=Xcm,BD=Ycm,CE=Zcm则AE=AF=Xcm,DC=BD=Ycm,AE=EC=Zcm依题意得方程组x+y=13y+z=14x+z=9解得:X=4Y=9Z=5。、、的长分别是、、cmcmcmCEBDAF594P98练习已知:如图,⊙O是Rt△ABC的内切圆,∠C是直角,三边长分别是a,b,c.求⊙O的半径r.ABC●┗┓ODEF.2cbar(1)Rt△的三边长与其内切圆半径间的关系(2)已知:如图,△ABC的面积为S,三边长分别为a,b,c.求内切圆⊙O的半径r.●ABC●O●┓ODEF.2cbaSr.21cbarS1.边长为3、4、5的三角形的内切圆的半径为——2.边长为5、5、6的三角形的内切圆的半径为——3.已知:如图,△ABC的面积S=4cm,周长等于10cm.求内切圆⊙O的半径r.1、本节学习了切线长的定义,注意和切线比较。学习了切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。3、希望同学们在以后的学习中要勇于探索和实践,养成科学的学习态度。同时还要注意总结作辅助线的方法,和解题时要注意运用“数形结合”的思想方法。pO小结AB2、记住圆外切四边形的性质,并比较圆内接四边形
本文标题:24.2.2 切线长定理和圆内切三角形 (新)
链接地址:https://www.777doc.com/doc-4134891 .html