您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2015年天津市高考数学试卷(理科)
第1页(共22页)2015年天津市高考数学试卷(理科)一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2015•天津)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁UB=()A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}2.(5分)(2015•天津)设变量x,y满足约束条件,则目标函数z=x+6y的最大值为()A.3B.4C.18D.403.(5分)(2015•天津)阅读如图的程序框图,运行相应的程序,则输出S的值为()A.﹣10B.6C.14D.184.(5分)(2015•天津)设x∈R,则“|x﹣2|<1”是“x2+x﹣2>0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.(5分)(2015•天津)如图,在圆O中,M、N是弦AB的三等分点,弦CD,CE分别经过点M,N,若CM=2,MD=4,CN=3,则线段NE的长为()第2页(共22页)A.B.3C.D.6.(5分)(2015•天津)已知双曲线﹣=1(a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=17.(5分)(2015•天津)已知定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为()A.a<b<cB.a<c<bC.c<a<bD.c<b<a8.(5分)(2015•天津)已知函数f(x)=,函数g(x)=b﹣f(2﹣x),其中b∈R,若函数y=f(x)﹣g(x)恰有4个零点,则b的取值范围是()A.(,+∞)B.(﹣∞,)C.(0,)D.(,2)二.填空题(每小题5分,共30分)9.(5分)(2015•天津)i是虚数单位,若复数(1﹣2i)(a+i)是纯虚数,则实数a的值为.10.(5分)(2015•天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.第3页(共22页)11.(5分)(2015•天津)曲线y=x2与y=x所围成的封闭图形的面积为.12.(5分)(2015•天津)在(x﹣)6的展开式中,x2的系数为.13.(5分)(2015•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3,b﹣c=2,cosA=﹣,则a的值为.14.(5分)(2015•天津)在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°.动点E和F分别在线段BC和DC上,且=λ,=,则•的最小值为.三.解答题(本大题共6小题,共80分)15.(13分)(2015•天津)已知函数f(x)=sin2x﹣sin2(x﹣),x∈R.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣,]内的最大值和最小值.16.(13分)(2015•天津)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加,现有来自甲协会的运动员3名,其中种子选手2名,乙协会的运动员5名,其中种子选手3名,从这8名运动员中随机选择4人参加比赛.(Ⅰ)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;(Ⅱ)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.17.(13分)(2015•天津)如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D的中点.(Ⅰ)求证:MN∥平面ABCD(Ⅱ)求二面角D1﹣AC﹣B1的正弦值;第4页(共22页)(Ⅲ)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长.18.(13分)(2015•天津)已知数列{an}满足an+2=qan(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列(1)求q的值和{an}的通项公式;(2)设bn=,n∈N*,求数列{bn}的前n项和.19.(14分)(2015•天津)已知椭圆+=1(a>b>0)的左焦点为F(﹣c,0),离心率为,点M在椭圆上且位于第一象限,直线FM被圆x2+y2=截得的线段的长为c,|FM|=.(Ⅰ)求直线FM的斜率;(Ⅱ)求椭圆的方程;(Ⅲ)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围.20.(14分)(2015•天津)已知函数f(x)=nx﹣xn,x∈R,其中n∈N•,且n≥2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的正实数x,都有f(x)≤g(x);(Ⅲ)若关于x的方程f(x)=a(a为实数)有两个正实数根x1,x2,求证:|x2﹣x1|<+2.第5页(共22页)2015年天津市高考数学试卷(理科)参考答案与试题解析一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2015•天津)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁UB=()A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}考点:交、并、补集的混合运算.菁优网版权所有专题:集合.分析:由全集U及B,求出B的补集,找出A与B补集的交集即可;解答:解:∵全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},∴∁UB={2,5,8},则A∩∁UB={2,5}.故选:A.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)(2015•天津)设变量x,y满足约束条件,则目标函数z=x+6y的最大值为()A.3B.4C.18D.40考点:简单线性规划.菁优网版权所有专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.解答:解:作出不等式组对应的平面区域如图:(阴影部分).由z=x+6y得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最大,此时z最大.由,解得,即A(0,3)将A(0,3)的坐标代入目标函数z=x+6y,得z=3×6=18.即z=x+6y的最大值为18.第6页(共22页)故选:C.点评:本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.3.(5分)(2015•天津)阅读如图的程序框图,运行相应的程序,则输出S的值为()A.﹣10B.6C.14D.18考点:程序框图.菁优网版权所有专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的i,S的值,当i=8时满足条件i>5,退出循环,输出S的值为6.解答:解:模拟执行程序框图,可得S=20,i=1i=2,S=18不满足条件i>5,i=4,S=14不满足条件i>5,i=8,S=6满足条件i>5,退出循环,输出S的值为6.故选:B.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的i,S的值是解题的第7页(共22页)关键,属于基础题.4.(5分)(2015•天津)设x∈R,则“|x﹣2|<1”是“x2+x﹣2>0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.菁优网版权所有专题:简易逻辑.分析:根据不等式的性质,结合充分条件和必要条件的定义进行判断即可.解答:解:由“|x﹣2|<1”得1<x<3,由x2+x﹣2>0得x>1或x<﹣2,即“|x﹣2|<1”是“x2+x﹣2>0”的充分不必要条件,故选:A.点评:本题主要考查充分条件和必要条件的判断,比较基础.5.(5分)(2015•天津)如图,在圆O中,M、N是弦AB的三等分点,弦CD,CE分别经过点M,N,若CM=2,MD=4,CN=3,则线段NE的长为()A.B.3C.D.考点:与圆有关的比例线段.菁优网版权所有专题:选作题;推理和证明.分析:由相交弦定理求出AM,再利用相交弦定理求NE即可.解答:解:由相交弦定理可得CM•MD=AM•MB,∴2×4=AM•2AM,∴AM=2,∴MN=NB=2,又CN•NE=AN•NB,∴3×NE=4×2,∴NE=.故选:A.点评:本题考查相交弦定理,考查学生的计算能力,比较基础.6.(5分)(2015•天津)已知双曲线﹣=1(a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为()第8页(共22页)A.﹣=1B.﹣=1C.﹣=1D.﹣=1考点:双曲线的标准方程.菁优网版权所有专题:计算题;圆锥曲线的定义、性质与方程.分析:由抛物线标准方程易得其准线方程,从而可得双曲线的左焦点,再根据焦点在x轴上的双曲线的渐近线方程渐近线方程,得a、b的另一个方程,求出a、b,即可得到双曲线的标准方程.解答:解:由题意,=,∵抛物线y2=4x的准线方程为x=﹣,双曲线的一个焦点在抛物线y2=4x的准线上,∴c=,∴a2+b2=c2=7,∴a=2,b=,∴双曲线的方程为.故选:D.点评:本题主要考查双曲线和抛物线的标准方程与几何性质,考查学生的计算能力,属于基础题.7.(5分)(2015•天津)已知定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为()A.a<b<cB.a<c<bC.c<a<bD.c<b<a考点:函数单调性的性质.菁优网版权所有专题:函数的性质及应用.分析:根据f(x)为偶函数便可求出m=0,从而f(x)=2|x|﹣1,这样便知道f(x)在[0,+∞)上单调递增,根据f(x)为偶函数,便可将自变量的值变到区间[0,+∞)上:a=f(|log0.53|),b=f(log25),c=f(0),然后再比较自变量的值,根据f(x)在[0,+∞)上的单调性即可比较出a,b,c的大小.解答:解:∵f(x)为偶函数;∴f(﹣x)=f(x);∴2|﹣x﹣m|﹣1=2|x﹣m|﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=2|x|﹣1;第9页(共22页)∴f(x)在[0,+∞)上单调递增,并且a=f(|log0.53|)=f(log23),b=f(log25),c=f(0);∵0<log23<log25;∴c<a<b.故选:C.点评:考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间[0,+∞)上,根据单调性去比较函数值大小.对数的换底公式的应用,对数函数的单调性,函数单调性定义的运用.8.(5分)(2015•天津)已知函数f(x)=,函数g(x)=b﹣f(2﹣x),其中b∈R,若函数y=f(x)﹣g(x)恰有4个零点,则b的取值范围是()A.(,+∞)B.(﹣∞,)C.(0,)D.(,2)考点:根的存在性及根的个数判断.菁优网版权所有专题:创新题型;函数的性质及应用.分析:求出函数y=f(x)﹣g(x)的表达式,构造函数h(x)=f(x)+f(2﹣x),作出函数h(x)的图象,利用数形结合进行求解即可.解答:解:∵g(x)=b﹣f(2﹣x),∴y=f(x)﹣g(x)=f(x)﹣b+f(2﹣x),由f(x)﹣b+f(2﹣x)=0,得f(x)+f(2﹣x)=b,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(
本文标题:2015年天津市高考数学试卷(理科)
链接地址:https://www.777doc.com/doc-4135244 .html