您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 质量工具以及Minitable的运用
12•1:统计描述•2:区间估计与假设检验•3:方差分析(ANOVA)•4:回归分析(Regression)•5:实验设计(DOE)•6:质量工具(QualityTool)•7:测量系统分析(MSA)第七事业部品质部3描述性统计(DescriptiveStatistics)--单值图(IndividualValuePlot)--箱图(Boxplot)--柏拉图(Pareto)--直方图(Histogram)--时间序列图(TimeSeriesPlot)--边际图(MarginalPlot)--3D表面图(3DSurfacePlot)--柱状图(BarChart)--饼图(PieChart)第七事业部品质部4单值图(IndividualPlot)场次得分主场客场1201101009080IndividualValuePlotof得分vs场次GraphIndividualPlot第七事业部品质部5箱图(Boxplot)场次得分主场客场1201101009080Boxplotof得分by场次Q1-1.5*(Q3-Q1)Q3+1.5(Q3-Q1)Q3Q1medianGraphHistogramOutlier第七事业部品质部6得分Frequency115110105100959085809876543210Mean96.37StDev8.718N27Histogramof得分Normal直方图(Histogram)GraphHistogram类似茎叶图(Stem-and-Leaf)第七事业部品质部7柏拉图(Partochart)STATQualityToolsParetoChartCountPercent类型Count18.516.912.3Cum%27.752.370.887.7100.0181612118Percent27.724.6呆子流氓傻子疯子盲流706050403020100100806040200ParetoChartof类型第七事业部品质部8时间序列图(TimeSeriesPlot)Index得分2724211815129631201101009080场次客场主场TimeSeriesPlotof得分GraphTimeSeriesPlot第七事业部品质部9边际图(MarginalPlot)失份得分1201101009080701201101009080MarginalPlotof得分vs失份失份得分1201101009080701201101009080MarginalPlotof得分vs失份为单值图和直方图/点图/箱图的综合GraphMarginalPlot失份得分1201101009080701201101009080MarginalPlotof得分vs失份第七事业部品质部103D表面图(3DSurfacePlot)Graph3DSurfacePlot816.51012peeltest15.0160time13.518012.0temperture200SurfacePlotofpeeltestvstemperture,time第七事业部品质部11DisplayDescriptiveStatistics•StatBasicStatisticsDisplayDescriptiveStatistics得分Frequency11010090805432101101009080客场主场客场99.6StDev8.086N10Mean94.47StDev8.740N17主场MeanHistogram(withNormalCurve)of得分by场次Panelvariable:场次结果解释对截止12.10日的火箭队主客场得分进行了描述性统计。从结果可以看出:主场得分(mean:平均值99.60)大于客场得分(mean=94.47)。1:数据量少3:火箭队发挥不稳定(得分)2:对手强弱分明Variable场次NMeanSEMeanStDevMinimumQ1MedianQ3MaximumSkewnessKurtosis得分客场1794.472.128.7480.0089.0094.0099.00117.000.841.70主场1099.602.568.0989.0089.75104.00105.50109.00-0.45-1.89偏斜度峰度第七事业部品质部12区间估计与假设检验--小概率事件--单样本Z检验(1Sample-Z)--单样本T检验(1Sample-T)--双样本T检验(2Sample-T)--成对T检验(PairedT)--相关性检验(Correlation)--方差齐性(相等)检验(EqualVariances)--正态测试(NormalityTest)--卡方检验(Chi-squaretest)第七事业部品质部13总体:整个集合的全体特征样本:具有总体特征的子集根据样本确定总体!!!为什么需要区间估计与假设检验?区间估计与假设检验第七事业部品质部14天打雷劈小概率事件不要破坏花花草草。打雷了,下雨了,还是收衣服好!第七事业部品质部15StatBasicStats1Sample-Z单样本Z检验(1Sample-Z)实际显著性水平,可以把p值理解为假设的支持率或可信程度。某段时间内,对wirebond的金线拉力(wirepull)进行了170次测量,得到均值为13.93g,方差为1.26g,能否以95%的置信度认为该段时间内wirepull均值为16g?Testofmu=16vsnot=16Theassumedstandarddeviation=1.26NMeanSEMean95%CIZP17012.93000.0966(12.7406,13.1194)-31.770.000置信区间(confidenceinterval),区间估计总是与一定的概率保证相对应的第七事业部品质部16StatBasicStats1Sample-T单样本T检验(1Sample-T)设随机变量X服从标准正态分布N(0,1),随帆变量Y服从自由度为n的x2分布,且X与Y相互独立,则One-SampleT:得分Testofmu=100vsnot=100VariableNMeanStDevSEMean95%CITP得分2796.37048.71851.6779(92.9215,99.8193)-2.160.040得分1201101009080X_HoIndividualValuePlotof得分(withHoand95%t-confidenceintervalforthemean)置信区间(confidenceinterval)与Z检验的区别?第七事业部品质部17双样本T检验(2Sample-T)StatBasicStats2Sample-T为了估计磷肥对某种农作物增产的作用,现选20块土壤条件大致相同的土地。其中10块不施磷肥.另外10块施磷肥,得到亩产量进行比较。NMeanStDevSEMean不施磷肥10570.016.35.2施磷肥10600.026.78.4Difference=mu(不施磷肥)-mu(施磷肥)Estimatefordifference:-30.000095%CIfordifference:(-51.2082,-8.7918)T-Testofdifference=0(vsnot=):T-Value=-3.03P-Value=0.009DF=14Data施磷肥不施磷肥650625600575550Boxplotof不施磷肥,施磷肥不相关的样本第七事业部品质部18StatBasicStatsPairedT成对T检验(PairedT)Differences1.00.80.60.40.20.0X_HoIndividualValuePlotofDifferences(withHoand95%t-confidenceintervalforthemean)NMeanStDevSEMean运动前1760.11762.36070.5725运动后1759.61182.33260.5657Difference170.5058820.3436400.08334595%CIformeandifference:(0.329199,0.682566)T-Testofmeandifference=0(vsnot=0):T-Value=6.07P-Value=0.000为了估计进行运动活动后,人体体重的变化情况,选取17个人,在运动前后分别测量其体重,然后对数据进行分析相关样本第七事业部品质部19相关性检验(Correlation)Pearsoncorrelationof得分and失分=0.279P-Value=0.158StatBasicStatsCorrelation没有显著的相关性,数据相互独立第七事业部品质部20方差齐性(相等)检验(EqualVariances)StatANOVATestforequalvariancesFTest。对两个研究总体的总体平均数的差异进行显著性检验以外,我们还需要对两个独立样本所属总体的总体方差的差异进行显著性检验,统计学上称为方差齐性(相等)检验。场次95%BonferroniConfidenceIntervalsforStDevs主场客场17.515.012.510.07.55.0场次得分主场客场1201101009080F-Test0.985TestStatistic1.17P-Value0.841Levene'sTestTestStatistic0.00P-ValueTestforEqualVariancesfor得分可认为方差齐性第七事业部品质部21正态测试(NormalityTest)运动前Percent65.062.560.057.555.0999590807060504030201051Mean0.80960.12StDev2.361N17AD0.218P-ValueProbabilityPlotof运动前NormalStatBasicStatsNormalityTestP=0.8090.05,可以认为服从正态分布MEAN第七事业部品质部22卡方检验(Chi-squaretest)2满意比较满意不太满意不满意市区31522近郊211045远郊201172电视节目满意度调查H0:这三组居民对电视节目的意见是一致的H1:这三组居民对电视节目的意见不一致Chi-SquareTest:满意,比较满意,不太满意,不满意Chi-Squarecontributionsareprintedbelowexpectedcounts满意比较满意不太满意不满意Total市区315224024.008.674.333.002.0421.5511.2560.333近郊2110454024.008.674.333.000.3750.2050.0261.333远郊2011724024.008.674.333.000.6670.6281.6410.333Total7226139120Chi-Sq=10.391,DF=6,P-Value=0.109StatTablesChi-squaretest(tableinworksheet)第七事业部品质部23方差分析(ANOVA)--OneWayANOVA--TwoWayANOVA--Analysisofmeans--GeneralLinearModel第七事业部品质部24一、SNK-q检验二、DUNCAN检验三、TUKEY检验四、Fisher检验五、Dunnett检验六、HSU’sMCB检验“多重比较”的几种方法第七事业部品质部25OneWayANOVAOne-wayANOVA:SourceDFSSMSFPFactor395.8031.933.690.036Error15129.888.66Total18225.68ResidualPercent5.02.50.0-2.5-5.0999050101FittedValueRes
本文标题:质量工具以及Minitable的运用
链接地址:https://www.777doc.com/doc-413544 .html