您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 3.1.1-3.1.2变化率问题及导数的概念
3.1.1变化率问题高二数学选修1-13.1.2导数的概念时间3月18日4月18日4月20日日最高气温3.5℃18.6℃33.4℃现有南京市某年3月和4月某天日最高气温记载.观察:3月18日到4月18日与4月18日到4月20日的温度变化,用曲线图表示为:t(d)2030342102030A(1,3.5)B(32,18.6)0C(34,33.4)T(℃)210(注:3月18日为第一天)问题:t(d)2030342102030A(1,3.5)B(32,18.6)0C(34,33.4)T(℃)210问题1:“气温陡增”是一句生活用语,它的数学意义是什么?(形与数两方面)问题2:如何量化(数学化)曲线上升的陡峭程度?(1)曲线上BC之间一段几乎成了“直线”,由此联想如何量化直线的倾斜程度。t(d)2030342102030A(1,3.5)B(32,18.6)0C(34,33.4)T(℃)210(2)由点B上升到C点,必须考察yC—yB的大小,但仅仅注意yC—yB的大小能否精确量化BC段陡峭程度,为什么?在考察yC—yB的同时必须考察xC—xB,函数的本质在于一个量的改变本身就隐含着这种改变必定相对于另一个量的改变。t(d)2030342102030A(1,3.5)B(32,18.6)0C(34,33.4)T(℃)210(3)我们用比值近似地量化B、C这一段曲线的陡峭程度,并称该比值为【32,34】上的平均变化率CBCByyxx(4)分别计算气温在区间【1,32】【32,34】的平均变化率现在回答问题1:“气温陡增”是一句生活用语,它的数学意义是什么?(形与数两方面)定义:平均变化率:式子称为函数f(x)从x1到x2的平均变化率.1212)()(xxxfxf令△x=x2–x1,△y=f(x2)–f(x1),则xxxxfxfy)()(1212理解:1,式子中△x、△y的值可正、可负,但的△x值不能为0,△y的值可以为02,若函数f(x)为常函数时,△y=03,变式xxfxxfxxxfxf)()()()(111212xy思考:观察函数f(x)的图象平均变化率表示什么?121)()fxxx2f(xOABxyY=f(x)x1x2f(x1)f(x2)x2-x1f(x2)-f(x1)直线AB的斜率练习:1.甲用5年时间挣到10万元,乙用5个月时间挣到2万元,如何比较和评价甲、乙两人的经营成果?2.已知函数f(x)=2x+1,g(x)=–2x,分别计算在下列区间上f(x)及g(x)的平均变化率.(1)[–3,–1];(2)[0,5].小结:1.函数的平均变化率2.求函数的平均变化率的步骤:(1)求函数的增量Δf=Δy=f(x2)-f(x1);(2)计算平均变化率1212)()(yxxxfxfx1212)()(yxxxfxfx在高台跳水运动中,运动员相对于水面的高度为h(单位:m)与起跳后的时间t(单位:s)存在函数关系h=-4.9t2+6.5t+10hto求t=2时的瞬时速度?2我们先考察t=2附近的情况。任取一个时刻2+△t,△t是时间改变量,可以是正值,也可以是负值,但不为0.当△t<0时,在2之前;当△t>0时,在2之后。△t<0时2+△t△t>0时2+△t二.新授课学习2,22,2,.ttv计算区间和区间内平均速度可以得到如下表格△t0时,在[2+△t,2]这段时间内△t0时,在[2,2+△t]这段时间内1.139.4tv1.139.4tv13.051v当△t=–0.01时,13.149v当△t=0.01时,0951.13v当△t=–0.001时,1049.13v当△t=0.001时,13.09951v当△t=–0.0001时,13.10049v当△t=0.0001时,099951.13v△t=–0.00001,100049.13v△t=0.00001,13.0999951v△t=–0.000001,13.1000049v△t=0.000001,…………平均变化率近似地刻画了曲线在某一区间上的变化趋势.如何精确地刻画曲线在一点处的变化趋势呢?105.69.4)(2ttth当Δt趋近于0时,平均速度有什么变化趋势?,0,2,22,13.1.tt我们发现当趋近于时即无论从小于的一边还是从大于一边趋近于时平均速度都趋近于一个确定的值,||,2.,213.1/.tvttms从物理的角度看时间间隔无限变小时平均速度就无限趋近于时的瞬时速度因此运动员在时的瞬时速度是..,,.lim,11302113220定值趋近于确平均速度时趋势近于当表示我们用为了表述方便vttththt..时的极限趋近于当是我们称确定值022113tthth瞬时速度tt-ht+th000limt在局部以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。思考:⑴如何求瞬时速度?⑵lim是什么意思?在其下面的条件下求右面的极限值。⑶运动员在某一时刻t0的瞬时速度如何表示?0limt(2)(2)13.1hthtxx-fx+xf00示?处的瞬时变化率怎么表在x=xx2、函数f0xxfxxflimxylimxf0x0x000-+==即:1、函数的平均变化率怎么表示?思考:xx-fx+xf000xlim000xxyxfxxxfy=或记作:处的导数,=在=我们称它为函数定义:函数y=f(x)在x=x0处的瞬时变化率是xxxfxxfxxylim)()Δ(lim0000称为函数y=f(x)在x=x0处的导数,记作0000(Δ)()()lim.xfxxfxfxx)(0xf或,即0|xxy。其导数值一般也不相同的值有关,不同的与000)(.1xxxf的具体取值无关。与xxf)(.20一概念的两个名称。瞬时变化率与导数是同.3由导数的意义可知,求函数y=f(x)在点x0处的导数的基本方法是:);()()1(00xfxxfy求函数的增量;)()()2(00xxfxxfxy求平均变化率.lim)()3(00xyxfx取极限,得导数注意:这里的增量不是一般意义上的增量,它可正也可负.自变量的增量Δx的形式是多样的,但不论Δx选择哪种形式,Δy也必须选择与之相对应的形式.一作差、二求比、三取极限例1.(1)求函数y=3x2在x=1处的导数.(2)求函数f(x)=-x2+x在x=-1附近的平均变化率,并求出在该点处的导数.(3)质点运动规律为s=t2+3,求质点在t=3的瞬时速度.三.典例分析题型二:求函数在某处的导数练习:(1)求函数y=x2在x=1处的导数;(2)求函数y=x+1/x在x=2处的导数.,)(21)1()1(222xxxy解:,2)(22xxxxxy.2|,2)2(limlim100xxxyxxy,)2(2)212(21)2()2(xxxxxy,)2(211)2(2xxxxxxy.43|,43411])2(211[limlim200xxxyxxy小结:1求物体运动的瞬时速度:(1)求位移增量Δs=s(t+Δt)-s(t)(2)求平均速度(3)求极限;svt00()().limlimxxssttsttt2由导数的定义可得求导数的一般步骤:(1)求函数的增量Δy=f(x0+Δt)-f(x0)(2)求平均变化率(3)求极限yx'00()limxyfxx
本文标题:3.1.1-3.1.2变化率问题及导数的概念
链接地址:https://www.777doc.com/doc-4135853 .html