您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > SPC统计制程管制124736
WorldClassQualityUnimicron1前次投影片第一单元:基本统计概念第二单元:统计制程管制(SPC)之基本概念第三单元:管制图的介绍及其应用第四单元:常用管制图之绘制03/2003,RevE统计制程管制(StatisticalProcessControl)WorldClassQualityUnimicron2前次投影片本课程的目的使学员:•能运用SPC于日常工作之中以进行制程管控,达到有异常立即反应并做适当处理的目的.•能了解并说出统计制程管制之–A.基本概念,B.应用,C.绘制,D.判图WorldClassQualityUnimicron3前次投影片第一单元:基本统计概念甚么是统计学?•统计学:统计学为搜集、整理、展示、分析、解释资料,并由样本推论群体,是在不确定情况下作成决策的科学方法。•群体:由具有共同特性之个体所组成的整体。•样本:群体之一部分。•参数:由群体资料所计算出之群体表征值。例:鼎鑫电子全体员工平均身高、体重。•统计量:由样本数据所计算出之样本表征值。例:鼎鑫厂外层组人员的平均身高、体重。WorldClassQualityUnimicron4前次投影片例:XX电子公司欲由100片随机抽出之电路板来估计工厂所生产之电路板的厚度。请指出所欲研究之群体、样本、参数及统计量。群体:样本:参数:统计量:工厂所生产之全部电路板100片随机抽出之电路板全部电路板之平均厚度100片电路板之平均厚度WorldClassQualityUnimicron5前次投影片数据种类:依搜集方式的不同可分为下列两大类:•计量型数据:经由的方式取得资料,又称连续型数据。例:1.重量2.温度3.厚度•计数型数据:经由的方式取得资料,又称离散型数据。例:1.不合格产品数2.缺陷数目3.公司员工人数量测计数•例:决定下列各问题之资料属于离散型或连续型数据。A.鼎鑫电子公司之员工人数B.电路板内层蚀刻后之线宽C.VI检验的一片板子上的外观缺点数WorldClassQualityUnimicron6前次投影片数据的显示:直方图•直方图是一种将一群量测数据区分成几个相等的区间,并将各区间内数据所出现的次数,用条形表示出来的图形。•功用:用以了解一群数据之分布状况,并了解数据之中心值与变异之情形。例:右图为镀铜制程后所量测50片电路板的铜厚直方图与分布.WorldClassQualityUnimicron7前次投影片常态分布的曲线成“钟型曲线”,且具备下列特性:68.3%的数据在μ±σ范围内(μ:平均值,σ:标准差)95.5%的数据在μ±2σ范围内99.73%的数据在μ±3σ范围内2s2sMean3s3s1s1s68.3%95.5%99.7%常态分布一般常见的连续性数据,其平均值的分布大多成常态分布.WorldClassQualityUnimicron8前次投影片•中位数:将一组数据由小至大排序后,最中间的那一个数值称为中位数(偶数个数据,则取中间两个数据的平均值)。•样本平均数:公式X=(X1+X2+….+Xn)/n;其中n表样本大小原始数据特征值之计算原始数据特征主要可分为以下两大类:1.集中趋势:「集中趋势指针」是表示一组数据中央点位置所在的一个指针。1.集中趋势,2.离中趋势•最常用的集中趋势指针:平均数、中位数、众数。•众数:在一组数据中,出现次数最多之数值。(注:常态分布的平均数、中位数、众数皆趋向同一数值。)WorldClassQualityUnimicron9前次投影片平均数对离群值非常敏感,而中位数或众数对离离群值较不敏感,因此,当资料中有离群值时,则用或众数,否则,则用。中位数平均数平均数=众数=(12,15,17,23,23,25,28)的众数=23例:请找出下列样本数据之平均数及中位数:0,7,3,9,-2,4,6。例:请找出下列样本数据之平均数、中位数及众数:25,12,23,28,17,15,23平均数=(25+12+23+28+17+15+23)/7=20.43中位数=(12,15,17,23,23,25,28)的中间数=23中位数=(0+7+3+9-2+4+6)/7=3.86(-2,0,3,4,6,7,9)的中间数=4何时使用平均数?何时使用中位数或众数?(可以有两个以上)WorldClassQualityUnimicron10前次投影片全距(R):全距是用来衡量一组数据差异最简单的方法公式:变异数(S²)、标准差(s)例:请找出下列样本数据之全距:5,8,1,2,4全距:8-1=7R=最大值-最小值R=最大值-最小值1466例:1,3,4,6,6,9,13.平均数=6,中位数=6,众数=6.若在此组数据加入70:1,3,4,6,6,9,13,70.则平均数=中位数=众数=2.离中趋势:「离中趋势指标」是表示一组数据间差异大小或数值变化的一个指标。(注:最常用的集中趋势指标:平均数、中位数、众数。)•最常用的离中趋势指标:全距、变异数及标准差WorldClassQualityUnimicron11前次投影片第一单元练习一、判断题:1.最常用的离中趋势指标:全距、平均数、众数2.一组数据中可以有两个以上的众数3.常态分布的曲线成‘钟型曲线’4.直方图是用以了解一群数据之分布状况,并了解数据之全距与变异之情形5.平均数对离群值敏感,而中位数或众数对离群值不敏感6.全距是用来衡量一组数据差异最简单的方法7.依据常态分布,其95.5%的数据分布在μ±3σ范围内8.原始数据依搜集方式可以分为:计量型数据与计数型数据WorldClassQualityUnimicron12前次投影片第一单元练习9.一般常见的连续性数据,其平均值分布大多成常态分布二、问答题:1.请找出下列样本数据之平均数:1,4,3,5,-5,6,6,2?2.请找出下列样本数据之众数:0,7,3,9,-2,4,7,3,73.请找出下列样本数据之中位数:29,14,22,45,12,10?4.当资料中有离群值时,则用何种数?5.依据常态分布,其68.3%的数据分布在μ±几个σ范围内?WorldClassQualityUnimicron13前次投影片●什么是统计制程管制?统计制程管制简称(SPC),是利用抽样所得之样本资料(样本统计量)来监视制程之状态,在必要时采取调整制程参数之行动,以降低产品品质之变异性。统计制程管制为预防性之品质管制手段,强调:第一次就做对品质并不是某一个人或是某一部门的责任,如果要生产的产品能达到顾客所要求的「品质」,公司里每一个人包括生产线上的作业员、打字员、采购员、工程师以及公司的总经理等对产品的品质都有责任。而制程管制即是品管的一种技巧,凡与制程有关之人员均需具备制程管制的相关知识或技巧,尽到自己的品质责任。●我们为何要学统计制程管制?第二单元:统计制程管制(SPC)之基本概念WorldClassQualityUnimicron14前次投影片在任何的生产程序中,不管如何设计或维护,产品的一些固有的或自然之变异将永远存在。这些变异是由一些小量不可控制原因累积而成,例如:同批基板的板厚变化、前处理机器的振动所引起的品质变化等,当这些变异之量极小时,制程仍可被接受。这些自然变异通常称为一般原因,当制程在只有一般原因出现下操作,则称其在管制中。统计制程管制之主要目的,在尽快侦测出可归属原因之发生或制程之异常跳动,以便在制造出更多不合格品之前,就能发现制程之变异并进行改善工作。●统计制程管制的目的●在制程上为何要使用统计制程管制?WorldClassQualityUnimicron15前次投影片此外,制程中可能存在有其它的变异,这些变异的来源有机器的不适当调整、操作员之错误、原料之不良、机器故障或损坏等,这些变异的幅度通常较随机原因之变异为大,当这些变异出现时,代表制程不可接受。这些变异称为可归属原因或特殊原因,例如:前处理水破时间不合格、磨刷机的刷痕不良、喷嘴脱落、钻孔机夹头握针不良、粘尘纸掉屑等,制程若在可归属变异下操作则称其为制程失控。“可归属原因或特殊原因”就是我们进行统计制程管制所要找到的重点在生产中若能及时找出可归属原因或特殊原因之发生,则可避免制造出更多的不合格品,降低报废,从而可迅速改善品质。SPC的一些手法如:品管七大手法、管制图等,将可有助于迅速的侦测出制程发生变异及找出变异之原因。因此统计制程管制对改善制程而言,是一个很重要的工具。WorldClassQualityUnimicron16前次投影片一般原因可归属原因(或特殊原因)WorldClassQualityUnimicron17前次投影片第二单元总结A3:可归属原因或特殊原因.3.统计制程管制所要找到的重点为何?A1:利用抽样所得之样本资料(样本统计量)来监视制程之状态.1.什么是统计制程管制(SPC)?A2:第一次就做对.2.统计制程管制强调什么?WorldClassQualityUnimicron18前次投影片第二单元练习判断题:1.品质是某一个人或是某一部门的责任2.统计制程管制之主要目的,是尽快侦测出可归属原因之发生或制程异常之跳动3.制程有不正常原因存在时,应即调查原因,加以处置4.统计制程管制所要找到的重点为一般原因5.机器的不适当调整、操作员之错误等,这些变异的幅度通常较机遇原因之变异为大,代表制程不可接受。这些变异称为一般原因6.统计制程管制为预防性之品质管制手段,它强调第一次就做对WorldClassQualityUnimicron19前次投影片●管制图简介管制图是一种关于品质的图解记录,操作人员利用所收集的资料计算出两个管制界限(上限及下限),且画出这两个管制界限,在产品制造过程中随时将样本数据点入管制图内,以提醒操作人员。如发现有超出管制界限外之点或是出现特殊图样(异常现象)时,应立即由人员、机械设备、材料、方法(4M)环境(1E)等方向进行层别以追查原因,进而改善制程。人、机、料、法(4M)环境(1E)第三单元:管制图的介绍及其应用WorldClassQualityUnimicron20前次投影片管制图为一种图形表示工具,用以显示从样本中量测或计算所得之品质特性。典型之管制图包含一中心线(CenterLine,CL),用以代表制程处于统计管制内时品质特性之平均值。此图同时包含两条水平线,称为管制上限(UpperControlLimit,UCL)及管制下限(LowerControlLimit,LCL),用来表示制程或品质变异的容许范围或均匀性。管制图可用来判断品质变异之显著性,以测知制程是否在正常状态。图一为管制图之范例中心線管制上限管制下限510152025圖一.典型之管制圖=中心线+3σ=中心线-3σ●管制图之基本原理WorldClassQualityUnimicron21前次投影片所谓计量值管制图,系指管制图所依据之数据均由实际量测而得,如:产品之长度、重量、成份等。常用之计量值管制图有:●管制图之种类1、平均值与全距之管制图(X-RChart)例如:内层线路的线宽线距、防焊的油墨厚度等2、个别值与移动全距管制图(X-RmChart)例如:微蚀槽的药水浓度等依据收集数据的型态分:1)计量值管制图1)计量值管制图,2)计数值管制图WorldClassQualityUnimicron22前次投影片※注意:计数值管制图皆祇有一个图,而计量值管制图则有两个图。2)计数值管制图所谓计数值管制图,系管制图所依据之数据,均属于单位个数者,如:不良率、缺点数等经由计数方法而得之数据均属此类。常用之计数值管制图有:不良率管制图(pChart)例如:OS2测试的不良率等WorldClassQualityUnimicron23前次投影片▼基本原则正常管制图上的点,必须符合:(1)随机分散与(2)常态分布的原则,所以至少要满足下面几点要求:●管制图之研判与分析但是下列法则若有一成立,则判断制程失控:1.最近一点落在管制界线外。2.在管制界限内的点出现下述之特殊图样。(1).中心线上下的点数要大约相等(各占40%~60%)。(
本文标题:SPC统计制程管制124736
链接地址:https://www.777doc.com/doc-417178 .html