您好,欢迎访问三七文档
第二章:统计1、抽样方法:①简单随机抽样(总体个数较少)②系统抽样(总体个数较多)③分层抽样(总体中差异明显)注意:在N个个体的总体中抽取出n个个体组成样本,每个个体被抽到的机会(概率)均为Nn。2、总体分布的估计:⑴一表二图:①频率分布表——数据详实②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势注:总体分布的密度曲线与横轴围成的面积为1。⑵茎叶图:①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等。②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。3、总体特征数的估计:⑴平均数:nxxxxxn321;取值为nxxx,,,21的频率分别为nppp,,,21,则其平均数为nnpxpxpx2211;注意:频率分布表计算平均数要取组中值。⑵方差与标准差:一组样本数据nxxx,,,21方差:212)(1niixxns;标准差:21)(1niixxns注:方差与标准差越小,说明样本数据越稳定。平均数反映数据总体水平;方差与标准差反映数据的稳定水平。⑶线性回归方程①变量之间的两类关系:函数关系与相关关系;②制作散点图,判断线性相关关系③线性回归方程:abxy(最小二乘法)1221niiiniixynxybxnxaybx注意:线性回归直线经过定点),(yx。第三章:概率1、随机事件及其概率:⑴事件:试验的每一种可能的结果,用大写英文字母表示;⑵必然事件、不可能事件、随机事件的特点;⑶随机事件A的概率:1)(0,)(APnmAP.2、古典概型:⑴基本事件:一次试验中可能出现的每一个基本结果;⑵古典概型的特点:①所有的基本事件只有有限个;②每个基本事件都是等可能发生。⑶古典概型概率计算公式:一次试验的等可能基本事件共有n个,事件A包含了其中的m个基本事件,则事件A发生的概率nmAP)(.3、几何概型:⑴几何概型的特点:①所有的基本事件是无限个;②每个基本事件都是等可能发生。⑵几何概型概率计算公式:的测度的测度DdAP)(;其中测度根据题目确定,一般为线段、角度、面积、体积等。4、互斥事件:⑴不可能同时发生的两个事件称为互斥事件;⑵如果事件nAAA,,,21任意两个都是互斥事件,则称事件nAAA,,,21彼此互斥。⑶如果事件A,B互斥,那么事件A+B发生的概率,等于事件A,B发生的概率的和,即:)()()(BPAPBAP⑷如果事件nAAA,,,21彼此互斥,则有:)()()()(2121nnAPAPAPAAAP⑸对立事件:两个互斥事件中必有一个要发生,则称这两个事件为对立事件。①事件A的对立事件记作A)(1)(,1)()(APAPAPAP②对立事件一定是互斥事件,互斥事件未必是对立事件。1、基本概念⑴互斥事件:不可能同时发生的两个事件.如果事件ABC、、,其中任何两个都是互斥事件,则说事件ABC、、彼此互斥.当AB、是互斥事件时,那么事件AB发生(即AB、中有一个发生)的概率,等于事件AB、分别发生的概率的和,即()()()PABPAPB.⑵对立事件:其中必有一个发生的两个互斥事件.事件A的对立事件通常记着A.对立事件的概率和等于1.()1()PAPA.特别提醒:“互斥事件”与“对立事件”都是就两个事件而言的,互斥事件是不可能同时发生的两个事件,而对立事件是其中必有一个发生的互斥事件,因此,对立事件必然是互斥事件,但互斥事件不一定是对立事件,也就是说“互斥”是“对立”的必要但不充分的条件.⑶相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,(即其中一个事件是否发生对另一个事件发生的概率没有影响).这样的两个事件叫做相互独立事件.当AB、是相互独立事件时,那么事件AB发生(即AB、同时发生)的概率,等于事件AB、分别发生的概率的积.即()()()PABPAPB.若A、B两事件相互独立,则A与B、A与B、A与B也都是相互独立的.⑷独立重复试验①一般地,在相同条件下重复做的n次试验称为n次独立重复试验.②独立重复试验的概率公式如果在1次试验中某事件发生的概率是p,那么在n次独立重复试验中这个试验恰好发生k次的概率()(1)0,12,.,kknknnPknkCpp⑸条件概率:对任意事件A和事件B,在已知事件A发生的条件下事件B发生的概率,叫做条件概率.记作P(B|A),读作A发生的条件下B发生的概率.公式:()(),()0.()PABPBAPAPA2、离散型随机变量⑴随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量奎屯王新敞新疆随机变量常用字母,,,XY等表示.⑵离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.⑶连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.⑷离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.若X是随机变量,(,YaXbab是常数)则Y也是随机变量奎屯王新敞新疆并且不改变其属性(离散型、连续型).3、离散型随机变量的分布列⑴概率分布(分布列)设离散型随机变量X可能取的不同值为12,xx,…,ix,…,nx,X的每一个值ix(1,2,,in)的概率()iiPXxp,则称表X1x2x…ix…nxP1p2p…ip…np为随机变量X的概率分布,简称X的分布列.性质:①0,1,2,...;ipin②11.niip⑵两点分布如果随机变量X的分布列为则称X服从两点分布,并称(1)pPX为成功概率.⑶二项分布如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率是()(1).kknknPXkCpp其中0,1,2,...,,1knqp,于是得到随机变量X的概率分布如下:X01…k…nP00nnCpq111nnCpq…kknknCpq…0nnnCpq我们称这样的随机变量X服从二项分布,记作pnBX,~,并称p为成功概率.判断一个随机变量是否服从二项分布,关键有三点:①对立性:即一次试验中事件发生与否二者必居其一;②重复性:即试验是独立重复地进行了n次;③等概率性:在每次试验中事件发生的概率均相等.注:⑴二项分布的模型是有放回抽样;⑵二项分布中的参数是,,.pkn⑷超几何分布一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品数,则事件Xk发生的概率为()(0,1,2,,)knkMNMnNCCPXkkmC,于是得到随机变量X的概率分布如下:X01P1pp其中min,mMn,*,,,,nNMNnMNN≤≤.我们称这样的随机变量X的分布列为超几何分布列,且称随机变量X服从超几何分布.注:⑴超几何分布的模型是不放回抽样;⑵超几何分布中的参数是,,.MNn其意义分别是总体中的个体总数、N中一类的总数、样本容量.4、离散型随机变量的均值与方差⑴离散型随机变量的均值一般地,若离散型随机变量X的分布列为X1x2x…ix…nxP1p2p…ip…np则称1122iinnEXxpxpxpxp为离散型随机变量X的均值或数学期望(简称期望).它反映了离散型随机变量取值的平均水平.性质:①()().EaXbaEXb②若X服从两点分布,则().EXp③若pnBX,~,则().EXnp⑵离散型随机变量的方差一般地,若离散型随机变量X的分布列为X1x2x…ix…nxP1p2p…ip…np则称21()(())niiiDXxEXp为离散型随机变量X的方差,并称其算术平方根()DX为随机变量X的标准差.它反映了离散型随机变量取值的稳定与波动,集中与离散的程度.()DX越小,X的稳定性越高,波动越小,取值越集中;()DX越大,X的稳定性越差,波动越大,取值越分散.性质:①2()().DaXbaDX②若X服从两点分布,则()(1).DXpP③若pnBX,~,则()(1).DXnpP5、正态分布正态变量概率密度曲线函数表达式:Rxexfx,21222,其中,是参数,且X01…mP00nMNMnNCCC11nMNMnNCCC…mnmMNMnNCCC,0.记作2(,).N如下图:专题八:统计案例1、回归分析回归直线方程bxayˆ,其中1122211nniiiiiinniiiixxyyxynxybxxxnxaybx相关系数:12211niiinniiiixxyyrxxyy1222211niiinniiiixynxyxnxyny2、独立性检验假设有两个分类变量X和Y,它们的值域分另为{x1,x2}和{y1,y2},其样本频数22列联表为:y1y2总计x1aba+bx2cdc+d总计a+cb+da+b+c+d若要推断的论述为H1:“X与Y有关系”,可以利用独立性检验来考察两个变量是否有关系,并且能较精确地给出这种判断的可靠程度.具体的做法是,由表中的数据算出随机变量2K的值22()()()()()nadbcKabcdacbd,其中nabcd为样本容量,K2的值越大,说明“X与Y有关系”成立的可能性越大.随机变量2K越大,说明两个分类变量,关系越强;反之,越弱。23.841K时,X与Y无关;23.841K时,X与Y有95%可能性有关;26.635K时X与Y有99%可能性有关.
本文标题:高考统计知识点总结
链接地址:https://www.777doc.com/doc-4175120 .html