您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 56正弦定理教学设计
《正弦定理》教学设计山东省莱芜市第十七中学田才林一、教学内容:本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证明,最后进行简单的应用。二、教材分析:1、教材地位与作用:本节内容安排在《普通高中课程标准实验教科书·数学必修5》(A版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证明,感受“类比—猜想—证明”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。2、教学重点和难点:重点是正弦定理的发现和证明;难点是三角形外接圆法证明。三、教学目标:1、知识目标:掌握正弦定理,理解证明过程。2、能力目标:(1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。(2)增强学生的协作能力和数学交流能力。(3)发展学生的创新意识和创新能力。3、情感态度与价值观:(1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。(2)通过实例的社会意义,培养学生的爱国主义情感和为祖国努力学习的责任心。四、教学设想:本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以周围世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的深入探讨。让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。设计思路如下:五、教学过程:(一)创设问题情景课前放映一些有关军事题材的图片,并在课首给出引例:一天,我核潜艇A正在某海域执行巡逻任务,突然发现其正东处有一敌艇B正以30海里/小时的速度朝北偏西40°方向航行。经研究,决定向其发射鱼雷给以威慑性打击。已知鱼雷的速度为60海里/小时,问怎样确定发射角度可击中敌舰?[设计一个学生比较感兴趣的实际问题,吸引学生注意力,使其立刻进入到研究者的角色中来!](二)启发引导学生数学地观察问题,构建数学模型。用几何画板模拟演示鱼雷及敌舰行踪,在探讨鱼雷发射角度的过程中,抽象出一个解三角形问题:1、考察角A的范围,回忆“大边对大角”的性质2、让学生猜测角A的准确角度,由AC=2BC,从而B=2A从而抽象出一个雏形:abAB3、测量角A的实际角度,与猜测有误差,从而产生矛盾:定性研究如何转化为定量研究?4、进一步修正雏形中的公式,启发学生大胆想象:22,,ababABAB以及,,,sinsincoscostantanabababABABAB等[直觉先行,思辨引路,在矛盾冲突中引发学生积极的思维!](三)引导学生用“特例到一般”的研究方法,猜想数学规律。提出问题:1、如何对以上等式进行检验呢?激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,筛选出能成立的等式(sinsinabAB)。2、那这一结论对任意三角形都适用吗?指导学生用刻度尺、圆规、计算器等工具对一般三角形进行验证。3、让学生总结实验结果,得出猜想:在三角形中,角与所对的边满足关系sinsinsinabcABC[“特例→类比→猜想”是一种常用的科学的研究思路!](四)让学生进行各种尝试,探寻理论证明的方法。提出问题:1、如何把猜想变成定理呢?使学生注意到猜想和定理的区别,强化学生思维的严密性。创设情境布疑激趣观察实验建立模型探寻特例提出猜想深入思考证明猜想简单应用总结评估→→→→ABC2、怎样进行理论证明呢?培养学生的转化思想,通过作高转化为熟悉的直角三角形进行证明。3、你能找出它们的比值吗?借以检验学生是否掌握了以上的研究思路。用几何画板动画演示,找到比值,突破难点。4、将猜想变为定理,并用以解决课首提出的问题,并进行适当的思想教育。[学生成为发现者,成为创造者!让学生享受成功的喜悦!](五)反思总结,布置作业1、正弦定理具有对称和谐美2、“类比→实验→猜想→证明”是一种常用的研究问题的思路和方法课下思考:三角形中还有其它的边角定量关系吗?六、板书设计:正弦定理1、问题:大边对大角→边角准确的量化关系?2、研究思路:特例→类比→实验→猜想→证明3、结论:在△ABC中,边与所对角满足关系:2sinsinsinabcRABC七、课后反思本节课授课对象为实验班的学生,学习基础较好。同时,考虑到这是一节探究课,授课前并没有告诉学生授课内容。学生在未经预习不知正弦定理内容和证明方法的前提下,在教师预设的思路中,一步步发现了定理并证明了定理,感受到了创造的快乐,激发了学习数学的兴趣。(一)、通过创设教学情境,激活了学生思维。从认知的角度看,情境可视为一种信息载体,一种知识产生的背景。本节课数学情境的创设突出了以下两点:1.从有利于学生主动探索设计数学情境。新课标指出:学生的数学学习内容应当是现实的、有趣的和富有挑战性的。从心理学的角度看,青少年有一种好奇的心态、探究的心理。因此,本教案紧紧地抓住高二学生的这一特征,利用“正弦定理的发现和证明”这一富有挑战性和探索性的材料,精心设计教学情境,使学生在观察、实验、猜想、验证、推理等活动中,逐步形成创新意识。2.以问题为导向设计教学情境。“问题是数学的心脏”,本节课数学情境的设计处处以问题为导向:“怎样调整发射角度呢?”、“我们的工作该怎样进行呢?”、“我们的‘根据地’是什么?”、“对任意三角形都成立吗?”……促使学生去思考问题,去发现问题。(二)、创造性地使用了教材。数学教学的核心是学生的“再创造”,新课标提倡教师创造性地使用教材。本节课从问题情境的创造到数学实验的操作,再到证明方法的发现,都对教材作了一定的调整和拓展,使其更符合学生的思维习惯和认知水平,使学生在知识的形成过程、发展过程中展开思维,发展了学生的能力。(三)数学实验走进了课堂,这一朴实无华而又意义重大的科学研究的思路和方法给了学生成功的快乐;这一思维模式的养成也为学生的终身发展提供了有利的武器。ABC一些遗憾:由于这种探究课型在平时的教学中还不够深入,有些学生往往以一种观赏者的身份参与其中,主动探究意识不强,思维水平没有达到足够的提升。但相信随着课改实验的深入,这种状况会逐步改善。一些感悟:轻松愉快的课堂是学生思维发展的天地,是合作交流、探索创新的主阵地,是思想教育的好场所。新课标下的课堂是学生和教师共同成长的舞台!
本文标题:56正弦定理教学设计
链接地址:https://www.777doc.com/doc-4189489 .html