您好,欢迎访问三七文档
当前位置:首页 > 医学/心理学 > 医学试题/课件 > 3.1回归分析的基本思想及其初步应用(新)
回归分析的基本思想及其初步应用高二数学选修2-3第三章统计案例2020/3/6必修3(第二章统计)知识结构收集数据(随机抽样)整理、分析数据估计、推断简单随机抽样分层抽样系统抽样用样本估计总体变量间的相关关系用样本的频率分布估计总体分布用样本数字特征估计总体数字特征线性回归分析复习1、两个变量的关系不相关相关关系函数关系线性相关非线性相关现实生活中两个变量间的关系有哪些呢?相关关系:对于两个变量,当自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系。复习现实生活中存在着大量的相关关系。如:人的身高与年龄;产品的成本与生产数量;商品的销售额与广告费;家庭的支出与收入。水稻产量y与施肥量x复习思考:相关关系与函数关系有怎样的不同?函数关系中的两个变量间是一种确定性关系相关关系是一种非确定性关系函数关系是一种理想的关系模型相关关系在现实生活中大量存在,是更一般的情况复习二、线性相关关系的判定方法:1.散点图2.相关系数r三、非线性相关关系的判定方法:画散点图,呈非线性函数状。一、相关关系的判定方法:画散点图,呈函数状复习复习线性负相关线性正相关画散点图,样本点呈带状分布,判定线性相关关系不相关不相关复习相关系数r仅判定线性相关关系相关系数的性质(1)|r|1.(|r|=1时函数关系)(2)|r|越接近于1,线性相关程度越强;|r|越接近于0,线性相关程度越弱.niii=1nn22iii=1i=1(x-x)(y-y)r=(x-x)(y-y)2_n1i2i2_n1i2in1i__iiynyxnxyxnyxr>0线性正相关;r<0线性负相关.通常:r∈[-1,-0.75]--线性负相关很强;r∈[0.75,1]—线性正相关很强;r∈[-0.75,-0.3]--线性负相关一般;r∈[0.3,0.75]—线性正相关一般;r∈[-0.25,0.25]--线性相关性较弱;复习线性负相关线性正相关无关无关复习问题2:对于线性相关的两个变量用什么方法来刻划之间的关系呢?2、最小二乘估计最小二乘估计下的线性回归方程:ˆˆˆybxa1122211^()(),(),nniiiiiinniiiixxyyxnxybxxxnxaybxyniixnx11niiyny11回归直线必过样本点的中心ˆˆˆybxa),(yx复习1122(,),(,),...,(,)nnxyxyxy假设我们已经得到两个具有相关关系的变量的一组数据且回归方程是:y=bx+a,(1,2,...,)ixin()iiiiyyybxa其中,a,b是待定参数。当变量x取时与实际收集到的之间的偏差是iyoxy11(,)xy22(,)xy(,)iixyiiyy^iy21().niiiyyba使偏差平方和最小时,来确定斜率b的估计值和截距a的估计值复习求线性回归直线方程的步骤:1111(1),nniiiixxyynn求211(2),.nniiiiixxy求(3)代入公式1122211^()(),(),nniiiiiinniiiixxyyxnxybxxxnxaybxy(4)写出直线方程为,即为所求的回归直线方程。ˆˆˆybxa复习例1、观察两相关量得如下数据:x-1-2-3-4-553421y-9-7-5-3-115379101010221110,0,110,3010.3,1iiiiiiixyyyxx求两变量间的线性回归方程.解:列表:i12345678910xi-1-2-3-4-553421yi-9-7-5-3-115379xiyi91415125515121491011022110110100111010010iiiiixybyxxx000aybxb.yx所求回归直线方程为复习【温馨提示】对回归直线的四点说明(1)回归直线过点(x-,y-).(2)回归直线的截距a和斜率b都是通过样本估计而得的,存在着误差,这种误差可能导致预报结果的偏差.(3)线性回归方程y=a+bx中的b表示x增加1个单位时,y的平均变化量为b,而a表示y不随x的变化而变化的部分.(4)可以利用线性回归方程y=a+bx预报在x取某个值时,y的估计值.复习3、回归分析的基本步骤:画散点图求回归方程预报、决策这种方法称为回归分析.回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.回归分析知识结构图问题背景分析线性回归模型两个变量线性相关最小二乘法两个变量非线性相关非线性回归模型残差分析散点图应用2R换元转化比《数学3》中“回归”增加的内容数学3——统计1.画散点图2.了解最小二乘法的思想3.求回归直线方程y=bx+a4.用回归直线方程解决应用问题选修2-3——统计案例5.引入线性回归模型y=bx+a+e6.了解模型中随机误差项e产生的原因7.了解相关指数R2和模型拟合的效果之间的关系8.了解残差图的作用9.利用线性回归模型解决一类非线性回归问题10.正确理解分析方法与结果教学情境设计问题一:结合例1得出线性回归模型及随机误差。并且区分函数模型和回归模型。问题二:在线性回归模型中,e是用bx+a预报真实值y的随机误差,它是一个不可观测的量,那么应如何研究随机误差呢?问题三:如何发现数据中的错误?如何衡量随机模型的拟合效果?问题四:结合例1思考:用回归方程预报体重时应注意什么?问题五:归纳建立回归模型的基本步骤。问题六:若两个变量呈现非线性关系,如何解决?(分析例2)例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。问题一:结合例1得出线性回归模型及随机误差。并且区分函数模型和回归模型。解:1、选取身高为自变量x,体重为因变量y,作散点图:2.回归方程:172.85849.0ˆxyˆ学身高172cm女大生体重y=0.849×172-85.712=60.316(kg)探究:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?答:用这个回归方程不能给出每个身高为172cm的女大学生的体重的预测值,只能给出她们平均体重的估计值。由于所有的样本点不共线,而只是散布在某一直线的附近,所以身高和体重的关系可以用线性回归模型来表示:其中a和b为模型的未知参数,e称为随机误差.eabxy函数模型与“回归模型”的关系函数模型:因变量y完全由自变量x确定回归模型:预报变量y完全由解释变量x和随机误差e确定注:e产生的主要原因:(1)所用确定性函数不恰当;(2)忽略了某些因素的影响;(3)观测误差。思考:产生随机误差项e的原因是什么?问题二:在线性回归模型中,e是用bx+a预报真实值y的随机误差,它是一个不可观测的量,那么应如何研究随机误差呢?,1,2,...,,1,2,...iiiiiiiiybxaineyyybxaine1122nniii残差:一般的对于样本点(x,y),(x,y),...,(x,y),它们的随机误差为e其估计值为称为相应于点(x,y)的残差。结合例1除了身高影响体重外的其他因素是不可测量的,不能希望有某种方法获取随机误差的值以提高预报变量的估计精度,但却可以估计预报变量观测值中所包含的随机误差,这对我们查找样本数据中的错误和模型的评价极为有用,因此在此我们引入残差概念。e=y-(bx+a)eyy随机误差ˆˆeyye的估计量样本点:1122(,),(,),...,(,)nnxyxyxy相应的随机误差为:,1,2,...,iiiiieyyybxain随机误差的估计值为:ˆˆˆˆ,1,2,...,iiiiieyyybxainˆie称为相应于点的残差.(,)iixy称为残差平方和.2211()nniiiiieyy问题三:如何发现数据中的错误?如何衡量所选回归模型的拟合效果?(1)我们可以通过分析发现原始数据中的可疑数据,判断建立模型的拟合效果。iiieybxa(1)计算(i=1,2,...n)残差分析(2)画残差图(1)查找异常样本数据(3)分析残差图(2)残差点分布在以O为中心的水平带状区域,并沿水平方向散点的分布规律相同。第一种方法:利用残差图反映回归模型(函数模型)的拟合效果残差图的制作和作用:制作:坐标纵轴为残差变量,横轴可以有不同的选择.横轴为编号:可以考察残差与编号次序之间的关系,常用于调查数据错误.横轴为解释变量:可以考察残差与解释变量的关系,常用于研究模型是否有改进的余地.作用:判断所选择回归模型(函数模型)是否合适即拟合好与不好,残差图中的点应该分布在以横轴为中心的带形区域.带状越窄,说明所选择回归模型(函数模型)拟合效果越好。下面表格列出了女大学生身高和体重的原始数据以及相应的残差数据。编号12345678身高x/cm165165157170175165155170体重y/kg4857505464614359残差-6.3732.6272.419-4.6181.1376.627-2.8830.382女大学生身高和体重回归方程:172.85849.0ˆxy残差图的制作及作用。•坐标纵轴为残差变量,横轴可以有不同的选择;•若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域;•对于远离横轴的点,要特别注意。身高与体重残差图异常点错误数据模型问题几点说明:第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。误差与残差,这两个概念在某程度上具有很大的相似性,都是衡量不确定性的指标,可是两者又存在区别。误差与测量有关,误差大小可以衡量测量的准确性,误差越大则表示测量越不准确。误差分为两类:系统误差与随机误差。其中,系统误差与测量方案有关,通过改进测量方案可以避免系统误差。随机误差与观测者,测量工具,被观测物体的性质有关,只能尽量减小,却不能避免。残差――与预测有关,残差大小可以衡量预测的准确性。残差越大表示预测越不准确。残差与数据本身的分布特性,回归方程的选择有关。显然,R2的值越大,说明残差平方和越小,也就是说模型拟合效果越好。线性回归模型中,R2表示解析变量对预报变量变化的贡献率。R2越接近1,表示回归的效果越好(因为R2越接近1,表示解析变量和预报变量的线性相关性越强),R2=1时为函数关系。如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值来做出选择,即选取R2较大的模型作为这组数据的模型。注:相关指数R2是度量模型拟合效果的一种指标。在线性模型中,它代表自变量刻画预报变量的能力。(2)我们可以用相关指数R2来刻画回归的效果,其计算公式是22121()11()niiiniiyyRyy残差平方和。总偏差平方和第二种方法:利用残差图反映回归模型(函数模型)的拟合效果随机的定值1354总计0.36128.361残差变量0.64225.639回归变量比例平方和来源从上中可以看出,解析变量对总效应约贡献了64%,即R20.64,可以叙述为“身高解析了64%的体重变化”,而随机误差贡献了剩余的36%。所以,身高对体重的效应比随机误差的效应大得多。选线性回归模型比较合适下面我们用相关指数分析
本文标题:3.1回归分析的基本思想及其初步应用(新)
链接地址:https://www.777doc.com/doc-4190957 .html