您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2020年河北省中考数学模拟试题与答案
12020年河北省中考数学模拟试题与答案(试卷满分120分,考试时间120分钟)一、选择题(本题共12小题。每小题3分,共36分。在每小题给出的四个选项中,只有一项是正确的。)1.下列各点不在直线y=﹣x+2上的是()A.(3,﹣1)B.(2,0)C.(﹣1,1)D.(﹣3,5)2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10103.坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x轴距离的3倍.若A点在第二象限,则A点坐标为()A.(-9,3)B.(-3,1)C.(-3,9)D.(-1,3)4.如图所示的几何体的左视图是()A.B.C.D.5.一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A.10和7B.5和7C.6和7D.5和66.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°7.如图,一次函数与反比例函数的图象交于点A(1,3),B(3,1)两点,在第一象限,当一次函数大于反比例函数的值时,x的取值范围是()2A.x<1B.1<x<3C.x>3D.x>48.在平面直角坐标系中,将点P(﹣4,2)绕原点O顺时针旋转90°,则其对应点Q的坐标为()A.(2,4)B.(2,﹣4)C.(﹣2,4)D.(﹣2,﹣4)9.若二次根式有意义,则x的取值范围是()A.x>B.x≥C.x≤D.x≤510.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<nB.a<m<n<bC.a<m<b<nD.m<a<n<b11.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是由第1个图案经过平移而得,那么第n个图案中有白色六边形地面砖()块.A.6+4(n+1)B.6+4nC.4n﹣2D.4n+212.如图,一条抛物线与x轴相交于M、N两点(点M在点N的左侧),其顶点P在线段AB上移动.若点A、B的坐标分别为(﹣2,3)、(1,3),点N的横坐标的最大值为4,则点M的横坐标的最小值为()A.﹣1B.﹣3C.﹣5D.﹣73二、填空题(本题共6小题,满分18分。只要求填写最后结果,每小题填对得3分。)13.如果3sinα=+1,则∠α=.(精确到0.1度)14.将函数y=3x+1的图象平移,使它经过点(1,1),则平移后的函数表达式是.15.在平面直角坐标系中,将线段AB平移到A′B′,若点A.B.A′的坐标(-2,0)、(0,3)、(2,1),则点B′的坐标是_________.16.已知菱形的周长为40cm,两个相邻角度数比为1:2,则较短的对角线长为,面积为.17.如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于O点,则AB=.18.如图,⊙O的直径为16,AB、CD是互相垂直的两条直径,点P是弧AD上任意一点,经过P作PM⊥AB于M,PN⊥CD于N,点Q是MN的中点,当点P沿着弧AD从点A移动到终点D时,点Q走过的路径长为_____.三、解答题(本题共7小题,共66分。解答应写出文字说明、证明过程或推演步骤。)19.(6分)先化简,再求值:(﹣)÷,其中x是不等式组的整数解.20.(8分)如图,已知平行四边形ABCD四个顶点在格点上,每个方格单位为1.(1)求平行四边形ABCD的面积为;(2)在网格上请画出一个正方形,使正方形的面积等于平行四边形ABCD的面积.(尺规作图,保留作图痕迹)并把主要画图步骤写出来.21.(10分)植树节期间,某校360名学生参加植树活动,要求每人植树3~6棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:3棵;B:4棵;C:5棵;D:6棵,根据各4类型对应的人数绘制了扇形统计图(如图1)和尚未完成的条形统计图(如图2),请解答下列问题:(1)将条形统计图补充完整;(2)这20名学生每人植树量的众数为棵,中位数为棵;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:第一步:求平均数的公式是=第二步:此问题中n=4,x1=3,x2=4,x3=5,x4=6;第三步:==4.5(棵).①小宇的分析是不正确的,他错在第几步?②请你帮他计算出正确的平均数,并估计这360名学生共植树多少棵?22.(10分)如图,在四边形ABCD中,∠A=45°,CD=BC,DE是AB边的垂直平分线,连接CE.(1)求证:∠DEC=∠BEC;(2)若AB=8,BC=,求CE的长.23.(10分)某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;5(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?24.(10分)如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD、BC于点E、F,点P是边DC上的一个动点,且保持DP=AE,连接PE、PF,设AE=x(0<x<3).(1)填空:PC=,FC=;(用含x的代数式表示)(2)求△PEF面积的最小值;(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.25.(15分)如图所示,已知抛物线y=ax2(a≠0)与一次函数y=kx+b的图象相交于A(﹣1,﹣1),B(2,﹣4)两点,点P是抛物线上不与A,B重合的一个动点,点Q是y轴上的一个动点.(1)请直接写出a,k,b的值及关于x的不等式ax2<kx﹣2的解集;(2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;(3)是否存在以P,Q,A,B为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.6参考答案一、选择题(本题共12小题。每小题3分,共36分。在每小题给出的四个选项中,只有一项是正确的。)1.C2.B3.A4.D5.D6.C7.B8.A9.B10.A11.D12.C二、填空题(本题共6小题,满分18分。只要求填写最后结果,每小题填对得3分。)13.65.5°14.y=3x﹣2.15.(4,4)16.10cm,50cm217.18.2π三、解答题(本题共7小题,共66分。解答应写出文字说明、证明过程或推演步骤。)19.(6分)解:原式=[﹣]•=•=,解不等式组得1≤x<3,则不等式组的整数解为1、2,又x≠±1且x≠0,∴x=2,∴原式=.20.(8分)解(1)平行四边形ABCD的面积=4×2﹣2××1×2=6;(2)①作AE⊥BC于E,DF⊥BC于F;②延长AD至G,使DG=DF;③以AG为直径作半圆;④延长FD交半圆于H,则DH即为所求的正方形边长;⑤以DH为边长作正方形DHMN;如图所示21.(10分)解:(1)D类型的人数为20×10%=2人,完整的条形统计图如图所示:7(2)这20名学生每人植树量的众数为4棵,中位数为第10、11个数据的平均数,而第10、11个数据均落在B类型中,即中位数为4棵;故答案为:4、4;(3)①小宇错在第二步;②(棵).估计360名学生共植树360×4.3=1548(棵).22.(10分)(1)证明:∵DE是AB边的垂直平分线,∴DE⊥AB,AE=EB=4,∵∠A=45°,∴DE=AE=EB,又∵DC=CB,CE=CE,∴△EDC≌△EBC(SSS).∴∠DEC=∠BEC=45°;(2)解:过点C作CH⊥AB于点H,∵∠BEC=45°,∴CH=EH,设EH=x,则BH=4﹣x,在Rt△CHB中,CH2+BH2=BC2,即x2+(4﹣x)2=10,解之,x1=3,x2=1(不合题意,舍),即EH=3.∴CE=EH=3.823.(10分)解:(1)当40≤x≤58时,设y与x的函数解析式为y=k1x+b1,由图象可得,解得.∴y=﹣2x+140.当58<x≤71时,设y与x的函数解析式为y=k2x+b2,由图象得,解得,∴y=﹣x+82,综上所述:y=;(2)设人数为a,当x=48时,y=﹣2×48+140=44,∴(48﹣40)×44=106+82a,解得a=3;(3)设需要b天,该店还清所有债务,则:b[(x﹣40)•y﹣82×2﹣106]≥68400,∴b≥,当40≤x≤58时,∴b≥=,x=﹣时,﹣2x2+220x﹣5870的最大值为180,∴b,即b≥380;当58<x≤71时,b=,当x=﹣=61时,﹣x2+122x﹣3550的最大值为171,∴b,即b≥400.综合两种情形得b≥380,即该店最早需要380天能还清所有债务,此时每件服装的价格应定为55元.924.(10分)解:(1)∵四边形ABCD是矩形∴AD∥BC,DC=AB=3,AO=CO∴∠DAC=∠ACB,且AO=CO,∠AOE=∠COF∴△AEO≌△CFO(ASA)∴AE=CF∵AE=x,且DP=AE∴DP=x,CF=x,DE=4﹣x,∴PC=CD﹣DP=3﹣x故答案为:3﹣x,x(2)∵S△EFP=S梯形EDCF﹣S△DEP﹣S△CFP,∴S△EFP=﹣﹣×x×(3﹣x)=x2﹣x+6=(x﹣)2+∴当x=时,△PEF面积的最小值为(3)不成立理由如下:若PE⊥PF,则∠EPD+∠FPC=90°又∵∠EPD+∠DEP=90°∴∠DEP=∠FPC,且CF=DP=AE,∠EDP=∠PCF=90°∴△DPE≌△CFP(AAS)∴DE=CP∴3﹣x=4﹣x则方程无解,∴不存在x的值使PE⊥PF,即PE⊥PF不成立.25.(10分)解:(1)把A(﹣1,﹣1),代入y=ax2中,可得:a=﹣1,把A(﹣1,﹣1),B(2,﹣4)代入y=kx+b中,可得:,解得:,所以a=﹣1,k=﹣1,b=﹣2,关于x的不等式ax2<kx﹣2的解集是x<﹣1或x>2,(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C.10∵A(﹣1,﹣1),B(2,﹣4),∴C(﹣1,﹣4),AC=BC=3,设点P的横坐标为m,则点P的纵坐标为﹣m2.过点P作PD⊥AC于D,作PE⊥BC于E.则D(﹣1,﹣m2),E(m,﹣4),∴PD=m+1,PE=﹣m2+4.∴S△APB=S△APC+S△BPC﹣S△ABC===.∵<0,,﹣1<m<2,∴当时,S△APB的值最大.∴当时,,S△APB=,即△PAB面积的最大值为,此时点P的坐标为(,)(3)存在三组符合条件的点,当以P,Q,A,B为顶点的四边形是平行四边形时,∵AP=BQ,AQ=BP,A(﹣1,﹣1),B(2,﹣4),可得坐标如下:①P′的横坐标为﹣3,代入二次函数表达式,解得:P'(﹣3,﹣9),Q'(0,﹣12);②P″的横坐标为3,代入二次函数表达式,解得:P″(3,﹣9),Q″(0,﹣6);③P的横坐标为1,代入二次函数表达式,解得:P(1,﹣1),Q(0,﹣4).故:P的坐标为(﹣3,﹣9)或(3,﹣9)或(1,﹣1),Q的坐标为:Q(0,﹣12)或(0,﹣6)或(0,﹣4).
本文标题:2020年河北省中考数学模拟试题与答案
链接地址:https://www.777doc.com/doc-4206142 .html