您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 导数计算练习题答案(10)---副本
导数计算练习题答案1用导数的定义求函数212yx在点1x处的导数。解:221111()(1)12(1)22(1)limlimlim2lim14111xxxxfxfxxfxxxx2一物体的运动方程为310st,求该物体在3t时的瞬时速度。解:233(3)327ttvst3求在抛物线2yx上横坐标为3的点的切线方程。解:3(3)26xkfx,切点为(3,9),所求切线方程为96(3)yx,即690xy4求曲线32yx上点(1,1)处的切线方程与法线方程。解:切线斜率13122(1)33xkfx,法线斜率为32所求切线方程为21(1)3yx,即2310xy所求法线方程为31(1)2yx,即3250xy5自变量x取哪些值时,曲线2yx与3yx的切线平行?解:由已知,223xx,解出0x或23x6讨论函数yxx在点0x处的可导性。解:00()(0)0(0)lim=lim000xxfxfxxfxx00()(0)0(0)lim=lim000xxfxfxxfxx(0)(0)ff,所以函数yxx在点0x处的可导,且(0)0f。7函数2101()311xxfxxx在点1x处是否可导?解:221111()(1)(1)21(1)limlimlimlim12111xxxxfxfxxfxxxx111()(1)(31)233(1)limlimlim3111xxxfxfxxfxxx(1)(1)ff,所以函数()fx在点1x处不可导。8函数21sin0()00xxfxxx在点0x处是否连续?是否可导?解:2001lim()limsin0(0)xxfxxfx,所以函数()fx在点0x处连续。00()(0)1(0)limlimsin00xxfxffxxx所以函数()fx在点0x处可导,且(0)0f。9求下列各函数的导数(其中a,b为常数)(1)235yxx解:61yx(2)1243yxx解:222111()2yxxxx(3)2222xyx解:3314(2)2(2)2yxxxx(4)31xyx解:153221xyxxx332215()22yxx(5)1(1)(1)yxx解:11(1)(1)yxxxx31221111(1)222yxxxx(6)(1)2yxx解:3122(1)22()yxxxx11223112()(31)222yxxxx(7)()()yxaxb解:2()()()yxaxbxabxab2()yxab10求下列各函数的导数(其中a,b,c,n为常数)(1)lnyxx解:1ln(ln)lnln1yxxxxxxxx(2)lnnyxx解:111()ln(ln)ln(ln1)nnnnnyxxxxnxxxxnxx(3)logayx解:11log22lnayxyxa(4)11xyx解:222(1)(1)(1)(1)(1)(1)2(1)(1)(1)xxxxxxyxxx(5)251xyx解:2222222222(5)(1)(5)(1)5(1)(5)(2)5(1)(1)(1)(1)xxxxxxxxyxxx(6)232xyxx解:222(2)(2)(2)(2)2(2)(2)(1)4333(2)(2)(2)xxxxxxyxxx11求下列各函数的导数(1)sincosyxxx解:sincossincosyxxxxxx(2)1cosxyx解:22(1cos)(1cos)1cossin(1cos)(1cos)xxxxxxyxx(3)tantanyxxx解:222sectansec(1)sectanyxxxxxxx(4)5sin1cosxyx解:2(5cos)(1cos)5sin(1cos)(1cos)xxxxyx22(5cos)(1cos)5sin(sin)5cos55(1cos)(1cos)1cosxxxxxxxx12求下列各函数的导数(其中a,n为常数)(1)25(1)yx解:24224245(1)(1)5(1)(2)10(1)yxxxxxx(2)22(23)15yxx解:2222222(15)5615(23)615(23)21515xxyxxxxxxxx233226(15)101516451515xxxxxxxx(3)22yxa解:22222222()222xaxxyxaxaxa(4)21xyx解:222222222222223(2)11(1)(1)1211(1)(1)(1)(1)xxxxxxxxxxyxxxx(5)2log(1)ayx解:222(1)2(1)ln(1)lnxxyxaxa(6)22lnyax解:221ln()2yax,222222()2()axxyaxax(7)1ln1xyx解:ln(1)ln(1)yxx1111111(1)(1)111212(1)yxxxxxxxxxx(8)sinynx解:cos()cosynxnxnnx(9)sinnyx解:1cos()cosnnnnyxxnxx(10)sinnyx解:11sin(sin)cossinnnynxxnxx(11)lntan2xy解:2111(tan)(sec)()(tan)2222tantantan222xxxxyxxx211111sec222sintansincos222xxxxx(12)21sinyxx解:222111111112sincos()2sincos()2sincosyxxxxxxxxxxxxx(13)22lg()yxxa解:2222222222222221()2()ln10()ln10()ln10xxxaxaxxayxxaxxaxxaxa(14)1cosnyx解:11[(cos)]()(cos)(cos)sin(cos)nnnyxnxxnxx13求下列各函数的导数:(1)arcsin2xy解:2221211()22441()2xyxxx(2)22arctan1xyx解:22222222222212(1)2(1)2(2)arctan()211(1)(1)1()1xxxxxxyyxxxxxx22222(1)2(1)(1)xxx(3)2(arcsin)2xy解:221212(arcsin)(arcsin)2(arcsin)()2(arcsin)22222241()2xxxxxyxx212(arcsin)24xx(4)21sinyxxarcx解:222222222112(1)1(1)1211111xxyxxxxxxxxxx(5)sincossin(cos)yxxx解:1cos()(cos)cos(cos)(cos)2cosyxxxxxx1sincoscos(cos)(sin)22cosxxxxxx(6)22tan(12)yx解:222tan(12)[tan(12)]yxx22222tan(12)sec(12)(12)xxx2222tan(12)sec(12)4xxx2228tan(12)sec(12)xxx14下列各题中的方程均确定y是x的函数,求xy(其中a,b为常数)(1)221xyxy解:方程两边对x求导,有220xyyyxy即(2)2yxyyx,解出22yxyyx(2)220yaxyb解:方程两边对x求导,有2220yyayaxy即(22)2yaxyay,解出ayyyax(3)lnyxy解:方程两边对x求导,有1yyy即1(1)1yy,解出1yyy(4)1yyxe解:方程两边对x求导,有yyyexey即(1)yyxeye,解出1yyeyxe15求曲线322yyx在点(1,1)处的切线方程和法线方程。解:点(1,1)在曲线上即(1,1)为切点,切线斜率为1xy,方程两边对x求导,有2322yyyy,解出2232yyy于是得点(1,1)处切线斜率为(1,1)25y,得切线方程为21(1)5yx,即2530xy法线方程为51(1)2yx,即5270xy16利用取对数求导法求下列函数的导数(其中12,,,naaan为常数):(1)11xyxx解:方程两边取自然对数,1lnln(ln(1)ln(1))2yxxx,方程两边对x求导,11111[()]211yyxxx得111()2(1)2(1)yyxxx(2)23231(3)xxyxx解:方程两边取自然对数,12ln2lnln(1)ln(3)ln(3)33yxxxx,方程两边对x求导,1111121213333yyxxxx得2112()13(3)3(3)yyxxxx(3)tan(sin)xyx解:方程两边取自然对数,lntanln(sin)yxx,方程两边对x求导,221cossecln(sin)tansecln(sin)1sinxyxxxxxyx得2[secln(sin)1]yyxx17求下列各函数的导数(其中f可导)(1)()()xfxyfee,求xy,解:()()()()()()[()()()]xxfxxfxfxxxxyfeeefeefxefeefxfe(2)()xeyfex,求xy,解:1()()xexeyfexeex(3)22(sin)(cos)yfxfx,求xy解:22(sin)2sincos(cos)2cos()yfxxxfxxsinx22sin2[(sin)(cos)]xfxfx18求下列函数的导数:(1)2323xttytt,求dydx解:2333(1)222ttydyttdxxt(2)sin3cossin3sinxaya,(其中a为常数),求3dydx解:(3cos3sinsin3cos)3cos3sinsin3cos(3cos3cossin3sin)3cos3cossin3sinttydyadxxa333(1)2313(1)2dydx19设有函数210()010xxxfxkxkxex,试分析在点0x处,k为何值时,()fx有极限;k为何值时,()fx连续,k为何值时,()fx可导。解:(1)00lim()lim(1)1xxfxx00lim()lim(1)1xxxfxkxe
本文标题:导数计算练习题答案(10)---副本
链接地址:https://www.777doc.com/doc-4208689 .html