您好,欢迎访问三七文档
第二节牛顿的微积分一、牛顿传略1643年1月4日牛顿生于英国林肯郡的沃尔索普(Woolsthorpe)村,父亲是一个农民,在牛顿出生前就死了.虽然母亲也希望他务农,但幼年的牛顿却在做机械模型和实验上显示了他的爱好和才能.例如,他做了一个玩具式的以老鼠为动力的磨和一架靠水推动的木钟.14岁时,由于生活所迫,牛顿停学务农,以后在舅父的帮助下又入学读书.1661年,不满19岁的牛顿考入剑桥大学的三一学院.1665年初,他在毕业前夕发现了二项式定理,同年获文学学士学位,并当了研究生.但不久便由于在伦敦流行鼠疫,剑桥大学关闭,牛顿只好回农村居住.在沃尔索普村的18个月里,牛顿发明了微积分,提出了万有引力定律,还研究了光的性质.牛顿一生的重大成就大都发韧于这期间.后来,他在追忆这段峥嵘的青春岁月时说:“当年我正值发明创造能力最强的年华,比以后任何时期更专心致志于数学和哲学(科学).”我们特别注意到,他于1666年10月写成的《流数后人加的)是世界上第一篇微积分论文,它标志着这一学科的诞生.虽然论文直到本世纪才公开发表,但当时有抄本流传,牛顿的不少朋友和同事都看到过.1667年,瘟疫过去,牛顿又回到剑桥大学.第二年,他制成世界上第一架反射望远镜.由于他在科学上的出色成就,他的老师巴罗认为他的学识已超过自己,便于1669年10月主动把数学教授的职位让给他,于是牛顿开始了他三十年的大学教授生活.他在1669年写成《运用无穷多项方程的分析学》(DeAnalysiperAequationesNumeroTerminorumInfinitas,1711年发表),又于1671年写成《流数法和无穷级数(DeMe-thodisSerierumetFluxionum,1736年发表).这两篇论文同《流数简论》一起,奠定了微积分的理论基础.1672年,他当选为皇家学会会员,并第一次发表论文,内容是关于白色光的组成,引起广泛的兴趣和讨论.1675年,他将关于光的粒子说的论文送交皇家学会.1685年,他开始撰写《自然哲学的数学原理》(PhilosophiaeNaturalisPrincipiaMathematiˉca).1687年,这部伟大著作刚刚写完,便由哈雷(E.Halley,1656—1742)出资发表,立即对整个欧洲产生了巨大影响.著名的牛顿力学三定律、万有引力定律及牛顿的微积分成果都载于此书.它成为科学史上的一个里程碑.1689年,牛顿代表剑桥大学进入议会.不久,牛顿的母亲病重,他彻夜不眠地守着她,但并没有能挽留母亲的生命.由于长简论》(TheOctober1666TractonFluxions,题目是期的紧张工作及母亲病逝的精神打击,牛顿得了精神衰竭症,大约一年后才复原.1693年,牛顿写成他的最后一部微积分专著《曲线求积术》(DeOuadraturaCurvarum).1696年,牛顿被任命为造币厂督办,三年后当了厂长.从1665年到1696年,牛顿纯粹是一个科学家,为科学事业做出了许多卓越贡献.这以后的三十一年中,他一方面在官场服务,另一方面作为英国科学界的领袖而发挥作用.1703年,牛顿开始担任皇家学会会长,1704年发表了他的名著《光学》(Op-ticks,《曲线求积术》作为《光学》的附录同时发表,获得巨大成功.1705年被女皇封为爵士,得到了一生的最高荣誉.但他的研究重心却逐渐由科学转移到神学,晚年写了大量关于神学的文字.1727年3月31日,牛顿病逝于英国的肯辛顿.纵观牛顿的一生,他在科学上的最重要成就有三个:发明微积分、建立经典力学体系、提出光的性质的理论.其中任何一项成就都足以使他列入世界上的大科学家行列.但牛顿并不认为自己发现了真理的海洋,他在逝世前不久给朋友写的信中说:“我不知道世人怎样看待我;但我自己觉得,我不过像在一个海滨玩耍的小孩,为时而拾到一片比寻常更为莹洁的卵石,时而拾到一片更为美丽的贝壳而雀跃欢欣,而对于我面前的真理的海洋,却茫然无知.”二、《流数简论》《流数简论》表明,牛顿微积分的来源是运动学.1666年,他在坐标系中通过速度分量来研究切线,既促使了流数法的产生,又提供了它的几何应用的关键.牛顿把曲线f(x,y)=0看作动点的轨迹,动点的坐标x,y是时间的函数,而动点的水平速度分量和垂直速度和垂直速度为边的矩形对角线,所以曲线f(x,y)=0的切线斜率所以牛顿便在后来称它们为流数,实际上就是x和y对t的导数:而它们的比就是y对x的导数布尼茨发明的,我们这里采用它们是为了叙述方便.牛顿考虑的第一个问题是:给定x和y的关系f(x,y)=0,求的次数……令这些乘积的总和等于零.这个方程就给出速度(流数)之间的关系.若用子表示,则为它是牛顿用来计算流数之比(即求导)的基本法则.实际上,这个式子牛顿是用“无穷小”概念和他一年前发明的二项式定理来证明(1)式的.他认为,作非匀速运动的物体在无穷小时间间隔o中的运动情况同作匀速运动的物体在有限时间间隔中的情况相同,“因此,如果到某一时刻,它们已描绘的线段为x和y,那么到下一时刻所描绘的线段就是x+xo和y+yo.”牛顿用x+xo和y+yo代替f(x,y)=0中的x和y,于是有按二项式展开并略去o的二次以上(含二次)的项,得除以o后便得到(1)式.作为一个实例,可把y=xn写成f(x,y)=y-xn的形式,由(1)式推出的代数式).他对这一问题的研究导致了微积分基本定理的发现,即:其中A表示曲线y=f(x)下的面积.从《流数简论》可以看出,他是用如下方法推导这一重要定理的:设y表示曲线f(x)下的面积abc(图11.13),并把它看作垂平行移动,描绘出面积x和y,它们随时间而增加的速度是be和bc,”显然,be=1而bc=f(x).因此,牛顿认为面积y随时间的变化率是这显然等价于(2)式,就是说函数曲线下的面积的变化率等于曲线的纵坐标.他把求积问题看作求变化率的逆过程,即把y看作f(x)的积分(不定积分).牛顿的工作可以清楚地说明切线及面积的互逆关系.如果面积y=在解决了基本的微积分问题后,牛顿又进一步提出变量代换法,它变量z=1+xn,其流数比为这便是我们熟知的幂函数微分公式,它的现代形式为类似地,牛顿在积分中也采用了代换法,并在稍后的著作中总结出代换积分公式.这个问题将在下面讨论.《流数简论》中,牛顿还导出函数的积和商的微分法则.设y=u(x)·v(x),则由计算流数之比的基本法则得到至于函数和的微分,牛顿认为是显然的,没有作为公式列出.由于牛顿首次引入“流数”和“变化率”的概念,明确提出一般性的微积分算法,特别是提出微积分基本定理,所以说他“发明”了微积分.不过,他当时只是观察到这一重要定理,至于定理的证明则是在他的第二本微积分著作中才出现的.三、《运用无穷多项方程的分析学》(下简称《分析学》)在这本书中,牛顿假定曲线下的面积为z=axm,其中m是有理数.他把x的无穷小增量叫x的瞬,用o表示.由曲线、x轴、y轴及x+o处纵坐标所围成的面积用z+oy表示(图11.14),其中oy是面积的瞬,于是有z+oy=a(x+o)m.根据二项式定理考虑到z=axm,并用o去除等式两边,得略去仍然含o的项,得xy=maxm-1.这就是相应于面积z的纵坐标y的表达式,或者说是面积z在点的变化率线为y=maxm-1;反之,若曲线是y=maxm-1,则它下面的面积是z=axm.在这里,牛顿不仅给出了求变化率的普遍方法,而且证明了微积分基本定理.从计算角度来说,他实际上给出了两个基本的求导和积分公式(用现代符号表出)(axm)′=maxm-1;在证明了面积的导数是y值,并断言逆过程是正确的以后,牛顿给出下面的法则:若y值是若干项的和,则面积是由每一项得到的面积的和,用现在的话来说,就是函数之和的积分等于各函数的积分的和:∫[f1(x)+f2(x)+…+fn(x)]dx=∫f1(x)dx+∫f2(x)dx+…+∫fn(x)dx.他对如下的积分性质也有明确认识:∫af(x)dx=a∫f(x)dx.他利用上述知识得到各种曲线下的面积,解决了许多能表成和式的问题.在此基础上,牛顿提出了利用无穷级数进行逐项积分的方法.例如然后对这个无穷级数逐项积分,得他说,只要b是x的倍数,取最初几项就可以了.y=1-x2+x4-x6+x8-…(1)y=x-2-x-4+x-6-x-8+…(2)他说,当x很小时,应该用(1)式,若x较大就必须用(2)式了.可见他已意识到级数收敛和发散的区别,不过还没有提出收敛的概念.同《流数简论》相比,《分析学》的另一项理论进展表现在定积分上.牛顿把曲线下的面积看作无穷多个面积为无限小的面积之和,这种观念与现代是接近的.为了求某一个区间的确定的面积即定积分,牛顿提出如下方法:先求出原函数,再将上下限分别代入原函数而取其差.这就是著名的牛顿—莱布尼茨公式,是他与莱布尼茨各自独立发明的.若采用现代数学符号,该公式可表述为:若F(x)是f(x)在区间[a,b]中应用极广的定积分计算问题便转化为求原函数问题,所以它是十分重要的.《分析学》中还有其他一些出色的成果,例如,书中给出求高次方程近似根的方法(即牛顿法),导出正弦级数及余弦级数,等等.到此为止,牛顿已经建立起比较系统的微积分理论及算法.不过他在概念上仍有不清楚的地方.第一,他的无穷小增量o是不是0?牛顿认为不是.既然这样,运算中为什么可以略去含o的项呢?牛顿没有给出合乎逻辑的论证.第二,牛顿虽然提出变化率的概念,但没有提出一个普遍适用的定义,只是把它想象成“流动的”速度.牛顿自己也认为,他的工作主要是建立有效的计算方法,而不是澄清概念,他对这些方法仅仅作了“简略的说明而不是准确的论证.”牛顿的态度是实事求是的.四、《流数法和无穷级数》(下简称《流数法》)这是一部内容广泛的微积分专著,是牛顿在数学方面的代表作.在前两部书的基础上,牛顿提出了更加完整的理论.从书中可以看出,牛顿的流数概念已发展到成熟的阶段.他把随时间变化的量,即以时间为自变量的函数称为流量,以字母表的后几个字母v,x,y,z来表示;把流量的变化速度,即变化率称为流数,以表保留,并且仍用o表示.他在书中明确表述了他的流数法的理论依据,说:“流数法赖以建立的主要原理,乃是取自理论力学中的一个非常简单的原理,这就是:数学量,特别是外延量,都可以看成是由连续轨迹运动产生的;而且所有不管什么量,都可以认为是在同样方式下产生的.”又说:“本人是靠另一个同样清楚的原理来解决这个问题的,这就是假定一个量可以无限分割,或者可以(至少在理论上说)使之连续减小,直至……比任何一个指定的量都小.”牛顿在这里提出的“连续”思想及使一个量小到“比任何一个指定的量都小”的思想是极其深刻的,他正是在这种思想的主导下解决了如下两类基本问题.第一类:已知流量的关系求它们的流数之比,即已知y=f(x)或例如书中的问题1:如果流量x和y之间的关系是x3-ax2+axy-y3=0,求它们的流数之比.程中的x和y,得展开后利用x3-ax2+axy-y3=0这一事实再把余下的项除以o,得至此牛顿说:“我们已假定o是无限微小,它可以代表流动量的瞬,所以与它相乘的诸项相对于其他诸项来说等于没有.因此我把它们丢掉,而剩下从表面看,这种方法与《流数简论》中的方法一致.所不同的是,数.《简论》中求流数之比的基本法则也被牛顿赋予一般的意义.例如,假定y=xn,牛顿首先建立然后用二项式定理展开右边,消去y=xn,用o除两边,略去仍含o的项,结果得当然,在对具体函数微分时,不必采用无穷小而可直接代入公式.第二类:已知一个含流数的方程,求流量,即积分.(x),则数简论》中,牛顿在具体积分中已经采用了这种方法,只是到这时才明确总结出公式.从《简论》及《流数法》两书来看,他推导此式的思路大致如下:由(2),(3)得由微积分基本定理,得牛顿在书中还推出分部积分公式,即∫uv′dx=uv-∫vu′dx.其中u和v都是x的函数.若求∫uv′dx有困难而求∫vu′dx比较容易时,就可利用分部积分公式求积分.牛顿总结了他的积分研究成果,列成两个
本文标题:牛顿微积分
链接地址:https://www.777doc.com/doc-4217300 .html