您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 二次函数复习重点以及根的分布问题
初三数学培优卷:二次函数考点分析★★★二次函数的图像抛物线的时候应抓住以下五点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.★★二次函数y=ax2+bx+c(a,b,c是常数,a≠0)一般式:y=ax2+bx+c,三个点顶点式:y=a(x-h)2+k,顶点坐标对称轴顶点坐标(-2ba,244acba).顶点坐标(h,k)★★★abc作用分析│a│的大小决定了开口的宽窄,│a│越大,开口越小,│a│越小,开口越大,a,b的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y轴,当a,b同号时,对称轴x=-2ba0,即对称轴在y轴左侧,当a,b异号时,对称轴x=-2ba0,即对称轴在y轴右侧,(左同右异y轴为0)c的符号决定了抛物线与y轴交点的位置,c=0时,抛物线经过原点,c0时,与y轴交于正半轴;c0时,与y轴交于负半轴,以上a,b,c的符号与图像的位置是共同作用的,也可以互相推出.交点式:y=a(x-x1)(x-x2),(有交点的情况)与x轴的两个交点坐标x1,x2对称轴为221xxh一元二次方程02cbxax根的分布情况设方程200axbxca的不等两根为12,xx且12xx,相应的二次函数为20fxaxbxc,方程的根即为二次函数图象与x轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)分布情况两个负根即两根都小于0120,0xx两个正根即两根都大于0120,0xx一正根一负根即一个根小于0,一个大于0120xx大致图象(0a)得出的结论00200baf00200baf00f大致图象(0a)得出的结论00200baf00200baf00f综合结论(不讨论a)00200baaf00200baaf00fa表二:(两根与k的大小比较)分布情况两根都小于k即kxkx21,两根都大于k即kxkx21,一个根小于k,一个大于k即21xkx大致图象(0a)得出的结论020bkafk020bkafk0kf大致图象(0a)得出的结论020bkafk020bkafk0kf综合结论(不讨论a)020bkaafk020bkaafk0kfakkk表三:(根在区间上的分布)分布情况两根都在nm,内两根有且仅有一根在nm,内(图象有两种情况,只画了一种)一根在nm,内,另一根在qp,内,qpnm大致图象(0a)得出的结论0002fmfnbmna0nfmf0000fmfnfpfq或00fmfnfpfq大致图象(0a)得出的结论0002fmfnbmna0nfmf0000fmfnfpfq或00fmfnfpfq综合结论(不讨论a)——————0nfmf00qfpfnfmf根在区间上的分布还有一种情况:两根分别在区间nm,外,即在区间两侧12,xmxn,(图形分别如下)需满足的条件是(1)0a时,00fmfn;(2)0a时,00fmfn对以上的根的分布表中一些特殊情况作说明:(1)两根有且仅有一根在nm,内有以下特殊情况:1若0fm或0fn,则此时0fmfn不成立,但对于这种情况是知道了方程有一根为m或n,可以求出另外一根,然后可以根据另一根在区间nm,内,从而可以求出参数的值。如方程2220mxmx在区间1,3上有一根,因为10f,所以22212mxmxxmx,另一根为2m,由213m得223m即为所求;2方程有且只有一根,且这个根在区间nm,内,即0,此时由0可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。如方程24260xmxm有且一根在区间3,0内,求m的取值范围。分析:①由300ff即141530mm得出15314m;②由0即2164260mm得出1m或32m,当1m时,根23,0x,即1m满足题意;当32m时,根33,0x,故32m不满足题意;综上分析,得出15314m或1m例1、已知二次方程221210mxmxm有一正根和一负根,求实数m的取值范围。例2、已知方程2210xmxm有两个不等正实根,求实数m的取值范围。例3、已知二次函数222433ymxmxm与x轴有两个交点,一个大于1,一个小于1,求实数m的取值范围。例4、已知二次方程22340mxmx只有一个正根且这个根小于1,求实数m的取值范围。1.解:由2100mf即2110mm,从而得112m即为所求的范围。2解:由0102200mf218010mmmm3223220mmm或0322m或322m即为所求的范围。3解:由210mf即2210mm122m即为所求的范围。4解:由题意有方程在区间0,1上只有一个正根,则010ff4310m13m即为所求范围。(注:本题对于可能出现的特殊情况方程有且只有一根且这个根在0,1内,由0计算检验,均不复合题意,计算量稍大)
本文标题:二次函数复习重点以及根的分布问题
链接地址:https://www.777doc.com/doc-4218526 .html