您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业文档 > 小学数学图形计算例题大汇总
1第一讲不规则图形面积的计算(一)我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。例1如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。解:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。2又因为S甲+S乙=12×12+10×10=244,所以阴影部分面积=244-(50+132+12)=50(平方厘米)。例2如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积.解:因为△ABE、△ADF与四边形AECF的面积彼此相等,所以四边形AECF的面积与△ABE、△ADF的面积都等于正方形ABCD在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。例3两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。如右图那样重合.求重合部分(阴影部分)的面积。解:在等腰直角三角形ABC中∵AB=103∵EF=BF=AB-AF=10-6=4,∴阴影部分面积=S△ABG-S△BEF=25-8=17(平方厘米)。例4如右图,A为△CDE的DE边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米.求△ABD及△ACE的面积.解:取BD中点F,连结AF.因为△ADF、△ABF和△ABC等底、等高,所以它们的面积相等,都等于5平方厘米.所以△ACD的面积等于15平方厘米,△ABD的面积等于10平方厘米。又由于△ACE与△ACD等底、等高,所以△ACE的面积是15平方厘米。例5如下页右上图,在正方形ABCD中,三角形ABE的面积是8平方厘解:过E作BC的垂线交AD于F。在矩形ABEF中AE是对角线,所以S△ABE=S△AEF=8.在矩形CDFE中DE是对角线,所以S△ECD=S△EDF。例6如右图,已知:S△ABC=1,4解:连结DF。∵AE=ED,∴S△AEF=S△DEF;S△ABE=S△BED,例7如下页右上图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG的长DG为5厘米,求它的宽DE等于多少厘米?解:连结AG,自A作AH垂直于DG于H,在△ADG中,AD=4,DC=4(AD上的高).∴S△AGD=4×4÷2=8,又DG=5,∴S△AGD=AH×DG÷2,∴AH=8×2÷5=3.2(厘米),∴DE=3.2(厘米)。例8如右图,梯形ABCD的面积是45平方米,高6米,△AED的面积是5平方米,BC=10米,求阴影部分面积.5解:∵梯形面积=(上底+下底)×高÷2即45=(AD+BC)×6÷2,45=(AD+10)×6÷2,∴AD=45×2÷6-10=5米。∴△ADE的高是2米。△EBC的高等于梯形的高减去△ADE的高,即6-2=4米,例9如右图,四边形ABCD和DEFG都是平行四边形,证明它们的面积相等.证明:连结CE,ABCD的面积等于△CDE面积的2倍,而DEFG的面积也是△CDE面积的2倍。∴ABCD的面积与DEFG的面积相等。习题一一、填空题(求下列各图中阴影部分的面积):6二、解答题:1.如右图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE.求阴影部分面积。2.如右图,正方形ABCD与正方形DEFG的边长分别为12厘米和6厘米.求四边形CMGN(阴影部分)的面积.3.如右图,正方形ABCD的边长为5厘米,△CEF的面积比△ADF的面积大5平方厘米.求CE的长。4.如右图,已知CF=2DF,DE=EA,三角形BCF的面积为2,四边形BEDF的面积为4.求三角形ABE的面积.75.如右图,直角梯形ABCD的上底BC=10厘米,下底AD=14厘米,高CD=5厘米.又三角形ABF、三角形BCE和四边形BEDF的面积相等。求三角形DEF的面积.6.如右图,四个一样大的长方形和一个小的正方形拼成一个大正方形,其中大、小正方形的面积分别是64平方米和9平方米.求长方形的长、宽各是多少?7.如右图,有一三角形纸片沿虚线折叠得到右下图,它的面积与原三角形面积之比为2:3,已知阴影部分的面积为5平方厘米.求原三角形面积.8.如右图,ABCD的边长BC=10,直角三角形BCE的直角边EC长8,已知阴影部分的面积比△EFG的面积大10.求CF的长.习题一解答一、填空题:8二、解答题:3.CE=7厘米.可求出BE=12.所以CE=BE-5=7厘米.4.3.提示:加辅助线BD9∴CE=4,DE=CD-CE=5-4=1。同理AF=8,DF=AD-AF=14-8=6,6.如右图,大正方形边长等于长方形的长与宽的和.中间小正方形的边长等于长方形的长与宽的差.而大、小正方形的边长分别是8米和3米,所以长方形的宽为(8-3)÷2=2.5(米),长方形的长为8-2.5=5.5(米).7.15平方厘米.解:如右图,设折叠后重合部分的面积为x平方厘米,x=5.所以原三角形的面积为2×5+5=15平方厘米.∴阴影部分面积是:10x-40+S△GEF由题意:S△GEF+10=阴影部分面积,∴10x-40=10,x=5(厘米).10第五讲同余的概念和性质你会解答下面的问题吗?问题1:今天是星期日,再过15天就是“六·一”儿童节了,问“六·一”儿童节是星期几?这个问题并不难答.因为,一个星期有7天,而15÷7=2…1,即15=7×2+1,所以“六·一”儿童节是星期一。问题2:1993年的元旦是星期五,1994年的元旦是星期几?这个问题也难不倒我们.因为,1993年有365天,而365=7×52+1,所以1994年的元旦应该是星期六。问题1、2的实质是求用7去除某一总的天数后所得的余数.在日常生活中,时常要注意两个整数用某一固定的自然数去除,所得的余数问题.这样就产生了“同余”的概念.如问题1、2中的15与365除以7后,余数都是1,那么我们就说15与365对于模7同余。同余定义:若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b(modm).(*)上式可读作:a同余于b,模m。同余式(*)意味着(我们假设a≥b):a-b=mk,k是整数,即m|(a-b).例如:①15≡365(mod7),因为365-15=350=7×50。②56≡20(mod9),因为56-20=36=9×4。③90≡0(mod10),因为90-0=90=10×9。由例③我们得到启发,a可被m整除,可用同余式表示为:a≡0(modm)。例如,表示a是一个偶数,可以写a≡0(mod2)11表示b是一个奇数,可以写b≡1(mod2)补充定义:若m(a-b),就说a、b对模m不同余,用式子表示是:ab(modm)我们书写同余式的方式,使我们想起等式,而事实上,同余式与等式在其性质上相似.同余式有如下一些性质(其中a、b、c、d是整数,而m是自然数)。性质1:a≡a(modm),(反身性)这个性质很显然.因为a-a=0=m·0。性质2:若a≡b(modm),那么b≡a(modm),(对称性)。性质3:若a≡b(modm),b≡c(modm),那么a≡c(modm),(传递性)。性质4:若a≡b(modm),c≡d(modm),那么a±c≡b±d(modm),(可加减性)。性质5:若a≡b(modm),c≡d(modm),那么ac≡bd(modm)(可乘性)。性质6:若a≡b(modm),那么an≡bn(modm),(其中n为自然数)。性质7:若ac≡bc(modm),(c,m)=1,那么a≡b(modm),(记号(c,m)表示c与m的最大公约数)。注意同余式性质7的条件(c,m)=1,否则像普通等式一样,两边约去,就是错的。例如6≡10(mod4),而35(mod4),因为(2,4)≠1。请你自己举些例子验证上面的性质。同余是研究自然数的性质的基本概念,是可除性的符号语言。例1判定288和214对于模37是否同余,74与20呢?解:∵288-214=74=37×2。∴288≡214(mod37)。∵74-20=54,而3754,∴7420(mod37)。例2求乘积418×814×1616除以13所得的余数。12分析若先求乘积,再求余数,计算量太大.利用同余的性质可以使“大数化小”,减少计算量。解:∵418≡2(mod13),814≡8(mod13),1616≡4(mod13),∴根据同余的性质5可得:418×814×1616≡2×8×4≡64≡12(mod13)。答:乘积418×814×1616除以13余数是12。例3求14389除以7的余数。分析同余的性质能使“大数化小”,凡求大数的余数问题首先考虑用同余的性质化大为小.这道题先把底数在同余意义下变小,然后从低次幂入手,重复平方,找找有什么规律。解法1:∵143≡3(mod7)∴14389≡389(mod7)∵89=64+16+8+1而32≡2(mod7),34≡4(mod7),38≡16≡2(mod7),316≡4(mod7),332≡16≡2(mod7),364≡4(mod7)。∵389≡364·316·38·3≡4×4×2×3≡5(mod7),∴14389≡5(mod7)。答:14389除以7的余数是5。解法2:证得14389≡389(mod7)后,36≡32×34≡2×4≡1(mod7),∴384≡(36)14≡1(mod7)。∴389≡384·34·3≡1×4×3≡5(mod7)。13∴14389≡5(mod7)。例4四盏灯如图所示组成舞台彩灯,且每30秒钟灯的颜色改变一次,第一次上下两灯互换颜色,第二次左右两灯互换颜色,第三次又上下两灯互换颜色,…,这样一直进行下去.请问开灯1小时四盏灯的颜色如何排列?分析与解答经观察试验我们可以发现,每经过4次互换,四盏灯的颜色排列重复一次,而1小时=60分钟=120×30秒,所以这道题实质是求120除以4的余数,因为120≡0(mod4),所以开灯1小时四盏灯的颜色排列刚好同一开始一样。十位,…上的数码,再设M=a0+a1+…+an,求证:N≡M(mod9)。分析首先把整数N改写成关于10的幂的形式,然后利用10≡1(mod9)。又∵1≡1(mod9),10≡1(mod9),102≡1(mod9),…10n≡1(mod9),上面这些同余式两边分别同乘以a0、a1、a2、…、an,再相加得:a0+a1×10+a2×102+…+an×10n≡a0+a1+a2+…+an(mod9),即N≡M(mod9).这道例题证明了十进制数的一个特有的性质:任何一个整数模9同余于它的各数位上数字之和。14以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。例如,求1827496被9除的余数,只要先求(1+8+2+7+4+9+6),再求和被9除的余数。再观察一下上面求和式.我们可以发现,和不一定要求出.因为和式中1+8,2+7,9被9除都余0,求余数时可不予考虑.这样只需求4+6被9除的余数.因此,1827496被9除余数是1。有人时常利用十进制数的这个特性检验几个数相加、相减、相乘的结果对不对,这种检查方法叫:弃九法。弃九法最经常地是用于乘法.我们来看一个例子。用弃九法检验乘式5483×9117≡49888511是否正确?因为5483≡5+4+8+3≡11≡2(mod9),9117≡9+1+1+7≡0(mod9),所以548
本文标题:小学数学图形计算例题大汇总
链接地址:https://www.777doc.com/doc-4219046 .html