您好,欢迎访问三七文档
经济数学-微积分模拟试题-按模块分类一、单项选择题(每小题3分,)1.下列各函数对中,(D)中的两个函数相等.A.xxgxxf)(,)()(2B.1)(,11)(2xxgxxxfC.xxgxxfln2)(,ln)(2D.1)(,cossin)(22xgxxxf2.已知1sin)(xxxf,当(A)时,)(xf为无穷小量.A.0xB.1xC.xD.x3.13d1xx(C).A.0B.21C.21D.1.下列函数中为奇函数的是().B(A)xxysin(B)xxy3(C)xxyee(D)xxy22.下列结论正确的是().C(A)若0)(0xf,则0x必是)(xf的极值点(B)使)(xf不存在的点0x,一定是)(xf的极值点(C)0x是)(xf的极值点,且)(0xf存在,则必有0)(0xf(D)0x是)(xf的极值点,则0x必是)(xf的驻点3.下列等式成立的是().D(A)xxxdd1(B))1d(dlnxxx(C))d(edexxx(D))d(cosdsinxxx1.若函数xxxf1)(,,1)(xxg则)]2([gf().AA.-2B.-1C.-1.5D.1.52.曲线11xy在点(0,1)处的切线斜率为().BA.21B.21C.3)1(21xD.3)1(21x3.下列积分值为0的是().CA.-dsinxxxB.11-d2eexxxC.11-d2eexxxD.xxxd)(cos1.函数1lgxxy的定义域是().DA.1xB.0xC.0xD.1x且0x2.当x时,下列变量为无穷小量的是()DA.)1ln(xB.12xxC.21exD.xxsin3.若)(xF是)(xf的一个原函数,则下列等式成立的是().BA.)(d)(xFxxfxaB.)()(d)(aFxFxxfxaC.)()(d)(afbfxxFbaD.)()(d)(aFbFxxfba二、填空题(每小题3分,)6.若函数xxf11)(,则hxfhxf)()(.)1)(11hxx(7.已知1111)(2xaxxxxf,若)(xf在),(内连续,则a.28.若)(xf存在且连续,则])(d[xf.)(xf6.函数)1ln(42xxy的定义域是.]2,1(7.曲线1)(2xxf在)2,1(处的切线斜率是.218.函数xxf2cos)(的全体原函数是.cx2sin216.如果函数)(xfy对任意x1,x2,当x1x2时,有,则称)(xfy是单调减少的.6.)()(21xfxf7.已知xxxftan1)(,当时,)(xf为无穷小量.7.0x8.若cxFxxf)(d)(,则xfxx)de(e=.8.cFx)e(6.设21010)(xxxf,则函数的图形关于对称.6.y轴7.已知1111)(2xaxxxxf,若fx()在x=1处连续,则a.7.28.设边际收入函数为R(q)=2+3q,且R(0)=0,则平均收入函数为.8.qqR232)(三、微积分计算题(每小题10分,共20分)11.设2sin2cosxyx,求y.解;2cos22ln22sinxxyxx12.e1dlnxxx.解:4141414121d21ln21dln222e112e1eeexxxxxxxe11.设xxy32eln,求y.解:由导数运算法则和复合函数求导法则得)e()(ln32xxyxxx33eln212.计算e1dlnxxx.解:由定积分的分部积分法得e12e12e1d12ln2dlnxxxxxxxxe12242ex414e211.设xxy1)1ln(1,求)0(y.11.解:因为2)1()]1ln(1[)1(11xxxxy=2)1()1ln(xx所以)0(y=2)01()01ln(=012.xxxd)2sin(ln12.解:xxxd)2sin(ln=)d(22sin21dlnxxxxx=Cxxx2cos21)1(ln11.设)1ln(2xxy,求)3(y11.解因为)1(1122xxxxy11)11(11222xxxxx7分所以)3(y=211)3(1210分
本文标题:经济数学微积分试题
链接地址:https://www.777doc.com/doc-4221276 .html