您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 质量工具(QC七大手法)
质量工具简介(QC七大手法)质量管理部2015年9月一、QC七大手法新、旧对比二、旧QC七大手法简介目录一、QC七大手法新、旧对比新QC七大手法关联图法亲和图法系统图法矩阵图法矩阵数据分析法PDPC法矢线图法偏重于思考分析过程,主要是强调在问题发生前进行预防,但是应用较少。旧QC七大手法检查表分层法柏拉图鱼骨图散布图直方图控制图偏重于统计分析,针对问题发生后的改善,得到世界的广泛推广和应用。二、旧QC七大手法简介旧QC七大手法,也叫品管七工具,是目前全世界应用比较广泛的品质管理工具,它具有简单实用的特性。日本著名的品质管制专家石川馨曾说过,企业内95%的品质管制问题,可通过企业上上下下全体人员活用品管七工具而得到解决。特别说明:其实这些工具并不仅局限于质量管理应用,对企业的其他方面管理改进也很有用,大家一定要灵活运用。检查表是使用简单易于了解的标准化图形,人员只需填入规定之检查记号,再加以统计汇整其数据,即可提供量化分析或比对检查用,此种表格又称为点检表或查核表。2.1检查表(又称查核表)•定义适用于对规范性较强的数据的查核。无固定格式,简单、方便、灵活。•特点2.1检查表--明确要检查的项目及具体的要求•应用--设计表单--实施检查,保持检查记录--分析、总结检查记录2.1检查表点检用检查表:只记录结果是与否或好与坏•类别及示例项目检查内容判定问题描述整理过期、失效文件及时清理√整顿资料柜、文件盒等分类摆放整齐√清扫地面保持无尘、无屑、无水渍√清洁现场垃圾存放不超过垃圾桶的2/3×垃圾桶内垃圾过满素养按规定着装,穿工作服、佩戴工作牌√安全开关按扭、空开有标识,用途明确√办公室6S检查表2.1检查表记录用检查表:用来收集计量或计数资料•类别及示例不合格种类检查记录小计线密度超标正正正T17外观不良正T7断裂强度不达标正正I11含油率超标正I6其它正正T12合计53不合格品分类检查表2.1检查表•注意事项1、应尽量取得分层的信息;2、应尽量简便地取得数据;3、应立即与措施结合;应事先规定对什么样的数据发出警告,停止生产或向上级报告。4、检查项目如果是很久以前制订现已不适用的,必须重新研究和修订。将不同类型的一组数据按一定的性质、范围或目的进行分类(分层),进行数据分析。2.2分层法(又称层别法)•定义常用,简便易上手,结果一目了然。•特点2.2分层法•分层的必要性分层的必要性34经验判断的不足找到改进目标从杂乱无章的数据中获得信息产生结果的原因多面性212.2分层法---收集原始数据(或识别需要整理的数据)•应用---确定数据的性质、范围或要求的目的---将数据分层归类---根据分层结果进行处理或改进措施2.2分层法某公司为提高产品直通率,选取批量为800片的产品作为样本,将其A级品、B级品、C级品检测数据分别作了统计,统计结果见下表:•示例2.2分层法类别不良项目A级品B级品电性能57尺寸712外观104机械性能64总不良数2827不良率3.5%3.38%直通率96.5%96.62%产品批量:800片根据上图的统计分析数据可看出:A级品外观不良品问题较突出,B级品的缺损有待加强控制。2.2分层法•注意事项---准确、真实且具有代表性的原始数据---分层要清楚,具备参照性、可比性---层次的划分一般以产品种类、性质、人员的部门、班组等进行针对众多问题中占80%以上的主要问题,通过排序将突出问题表现出来而首先加以解决(二八原则)。2.3柏拉图法(又称排列图)•定义及时发现关键的少数和次要的多数,明确问题的症结所在,从而针对关键的少数实施改进。•特点2.3柏拉图法•应用——收集数据,用层别法分类,计算各层别项目占整体项目的百分数;——把分好类的数据进行汇总,由多到少进行排列,并计算累计百分数;——绘制横轴和纵轴刻度;——绘制柱状图;——绘制累积曲线;——记录必要事项——分析柏拉图,针对前3个主要原因采取改进措施——采取措施后,重新绘制柏拉图以对比实施效果2.3柏拉图法某公司生产产品的日产量为600件,不良品是82件,为分析原因,降低不良率,采用柏拉图表将统计问题点的原因归类排列,如下:•示例序不良原因不良数不良比例累积不良数累积比例1破损3036.59%3036.59%2裂纹2328.05%5364.64%3崩边1315.85%6680.49%4脏污67.32%7287.80%5删线不良44.88%7692.68%6玻璃缺陷67.32%82100%合计82100%2.3柏拉图法根据以上数据统计信息,绘制的柏拉图如下:破损裂纹崩边脏污玻璃缺损删线不良不良数302313664累计不良率36.59%64.64%80.49%87.80%95.12%100.00%30231366436.59%64.64%80.49%87.80%95.12%100.00%0.00%20.00%40.00%60.00%80.00%100.00%120.00%0102030405060708090100不良数由图表可看出:形成问题的主要原因是破损、裂纹、崩边,其所占的比例为80.49%。因此,要降低产品不良率,应优先解决破损、裂纹和崩边的问题。2.3柏拉图法•注意事项一般情况下针对分析出的前3项主要原因,其所占份额应该是所有原因的70%-80%以上,如果低于这个比例,则实施柏拉图法其意义不大。又称特性要因图、石川图。旨在用图解的方式表示出某种特性与其可能形成原因之间的关系,针对结果寻求原因,罗列所有可能的原因进行改善。2.4鱼骨图•定义能清晰反映造成结果的各类因果关系。•特点2.4鱼骨图大要因中要因小要因需解决的问题主骨大骨中骨小骨•分析原理--确定项目(即明确需要解决的问题)•应用--从5M1E(人机料法环测)6个方面分析原因--展开确定的原因,绘制图表--筛选主要原因(可结合柏拉图法进行)--针对主要原因优先采取改进措施--确认实施措施的效果2.4鱼骨图2.4鱼骨图生产部一季度产能不达标人员机器物料环境方法测试人员配备不足新员工操作不熟练,导致效率低春节停产后,炉台无法完全恢复物料无法按期到货工艺参数调整温湿度、洁净度不达标,需调整来料不合格测试设备能力不足针对生产部一季度产能不达标的分析:•示例•注意事项--分析原因注重多方面意见和看法(头脑风暴)2.4鱼骨图--一个特性要因图只分析一个特性,要具体化--对形成问题的原因要层次分明、追根究底,以便于从根本上解决问题用来表示对应的变量与变量之间相互影响与相互作用范围的图表。2.5散布图•定义变量之间往往存在着某种关系,或相互关联、制约,或在一定条件下可以转化。•特点2.5散布图正相关:两组数据成正比关系,A增大,B也增大•常见的散布图规律负相关:两组数据成正比关系,A增大,B反而减小不相关:两组数据散乱状态,A增大,B可能增大或减小ABABAB2.5散布图--收集数据(数据应是有对应或关联性质的成对数据,且数据量不宜太少,至少要30组以上)•应用--建立二维坐标系统,根据变量的值设定刻度--根据变量在坐标上的刻度描出坐标点--根据坐标点的阵群分布判定变量之间的关系--确定判定结果,实施对策2.5散布图温度与压强之间的变化关系,在相同体积条件下压强会随着温度的升高而增大,它们之间的关系为正比的散布关系。•示例PTP2P10T1T2温度压强2.5散布图•注意事项散布图所反映的可能是一种趋势,对于定性的结果还需要具体分析。用一组宽度相同、高度各异的矩形的排列状态表示数据分布状况,从而达到分析过程的质量和合格与否。2.6直方图•定义直观的反映过程状况,了解数据群的对准倾向和散布状态。此方法需要用到一定的数学及统计学知识,有一定难度。•特点2.6直方图•常见的直方图类型正态型偏向型这是一种比较理想的状态,直方图的结构成抛物线型,有一条位于图面中心的数据量最多的分布中心线,两边基本对称。表明过程属于统计控制状态。分布中心偏向一方(或左或右),使得直方图的结构成不对称的坡形状。表明过程中存在人为因素,如不合理的加工习惯方式、勉强作业等,应具体查找并改善。2.6直方图双峰型孤岛型分布中心像孤岛一样没有主体,使得直方图看起来有点凌乱无章。表明安排的过程不合理或过程进行中存在材料混杂、操作欠熟练、测量不正确等。有两个分布中心,使得直方图看起来像两座山峰。说明样本的数据来自两个不同的合体,表明数据收集渠道或过程中的产品归类方式有问题。2.6直方图起伏型没有明显的分布中心,直方图看起来像锯齿一样。说明制图时数据分组不当或过程的测量方法有问题。2.6直方图--确定制作对象和样本特性的类别(如:要制作某塑料件产品孔径测量数据的直方图,其规格是10.5±1mm)•应用及示例--收集样本数据如下(至少50组)123456789109.510.11010.110.510.210.310.910.510.89.79.810.61010.49.710.710.410.210.810.310.710.59.89.910.410.310.211.19.611.410.11010.110.29.810.810.310.310.410.710.31110.59.910.610.910.611.110.42.6直方图--找出最大值:Max=11.4、最小值Min=9.5--计算极差(R):R=Max-Min=11.4-9.5=1.9--确定组数(n):n=1+3.23logN=7(N为数据总数,n四舍五入取整)(经验:数据总数50~100、100~250、250以上组数区间为6~10、7~12、10~20)--计算组矩(C)=R/n=1.9/7=0.28,取C=0.3(四舍五入)--计算组界:第1组组界=Min±C/2=9.5±0.15=9.35(上界)—9.65(下界)第2组组界:下界=9.65,上界=下界+C=9.65+0.3=9.95第3-7组组界:同第2组,以此类推。2.6直方图统计样本数据,分组如下:组别组界中心值样本数量备注19.36—9.659.5229.65—9.959.8739.95—10.2510.111410.25—10.5510.415510.55—10.8510.79610.85—11.15115711.15—11.1511.312.6直方图绘制直方图如下:02468101214161234567组别数据个数图中显示:基本对称,分布中心偏左(尺寸偏小的方向),说明孔径尺寸在公差范围内普遍偏小,后期需调整。2.6直方图•注意事项--数据的量要足够,否则不能准确反应结果--分组很重要,如果分组偏大或偏小,会导致直方图不规则的形状--数据值绝对不可以落在组界上,否则无法对数据归类--直方图仅显示过程的分布状态,改进质量还需深入和具体分析用于区分质量波动是偶然原因引起的还是系统原因引起的,判断生产过程是否处于稳定状态,并画有控制界限的一种图。2.7控制图•定义及时发现生产过程中的异常现象和缓慢变异,预防不合格品发生。•特点计量型:X-s控制图(平均值和标准差图)X-R控制图(平均值极差控制图)Me-R控制图(中位值极差控制图)X-MR控制图(单值移动极差控制图)2.7控制图•类别计数型:P控制图(不合格率控制图)Pn控制图(不合格品数控制图)C控制图(缺陷数控制图)控制图(单位缺陷数控制图)常用常用2.7控制图--确定需要实施控制的项目,如重要工序、过程参数等•应用--按一定的频次和数量抽取样本--检查样本并记录结果--将结果绘制于管理图上--判定变异,采取处理措施--确认改进后的效果2.7控制图•识别失控状态控制图出现以下情况,则说明发生了变异,需关注。A、有一个或更多的点超出控制限B、有连续7个或以上的点位于中心线的同一侧.....CL(中心线)UCL(上限)LCL(下限)CL(中心线)UCL(上限)LCL(下限)........2.7控制图C、有连续7个或以上的点上升或下降.......CL(中心线)UCL(上限)LCL(下限).......CL(中心线)UCL(上限)LCL(下限)2.7控制图D、连续3个点中至少
本文标题:质量工具(QC七大手法)
链接地址:https://www.777doc.com/doc-422790 .html