您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 高考数学备考冲刺之易错点点睛系列专题 平面解析几何(学生版)
-1-平面解析几何一、高考预测解析几何初步的内容主要是直线与方程、圆与方程和空间直角坐标系,该部分内容是整个解析几何的基础,在解析几何的知识体系中占有重要位置,但由于在高中阶段平面解析几何的主要内容是圆锥曲线与方程,故在该部分高考考查的分值不多,在高考试卷中一般就是一个选择题或者填空题考查直线与方程、圆与方程的基本问题,偏向于考查直线与圆的综合,试题难度不大,对直线方程、圆的方程的深入考查则与圆锥曲线结合进行.根据近年来各地高考的情况,解析几何初步的考查是稳定的,预计2012年该部分的考查仍然是以选择题或者填空题考查直线与圆的基础知识和方法,而在解析几何解答题中考查该部分知识的应用.圆锥曲线与方程是高考考查的核心内容之一,在高考中一般有1~2个选择题或者填空题,一个解答题.选择题或者填空题在于有针对性地考查椭圆、双曲线、抛物线的定义、标准方程和简单几何性质及其应用,试题考查主要针对圆锥曲线本身,综合性较小,试题的难度一般不大;解答题中主要是以椭圆为基本依托,考查椭圆方程的求解、考查直线与曲线的位置关系,考查数形结合思想、函数与方程思想、等价转化思想、分类与整合思想等数学思想方法,这道解答题往往是试卷的压轴题之一.由于圆锥曲线与方程是传统的高中数学主干知识,在高考命题上已经比较成熟,考查的形式和试题的难度、类型已经较为稳定,预计2012年仍然是这种考查方式,不会发生大的变化.解析几何的知识主线很清晰,就是直线方程、圆的方程、圆锥曲线方程及其简单几何性质,复习解析几何时不能把目标仅仅定位在知识的掌握上,要在解题方法、解题思想上深入下去.解析几何中基本的解题方法是使用代数方程的方法研究直线、曲线的某些几何性质,代数方程是解题的桥梁,要掌握一些解方程(组)的方法,掌握一元二次方程的知识在解析几何中的应用,掌握使用韦达定理进行整体代入的解题方法;数学思想方法在解析几何问题中起着重要作用,数形结合思想占首位,其次分类讨论思想、函数与方程思想、化归与转化思想,如解析几何中的最值问题往往就是建立求解目标的函数,通过函数的最值研究几何中的最值.复习解析几何时要充分重视数学思想方法的运用.二、知识导学(一)直线的方程1.点斜式:)(11xxkyy;2.截距式:bkxy;3.两点式:121121xxxxyyyy;4.截距式:1byax;5.一般式:0CByAx,其中A、B不同时为0.(二)两条直线的位置关系两条直线1l,2l有三种位置关系:平行(没有公共点);相交(有且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交.设直线1l:y=1kx+1b,直线2l:y=2kx+2b,则1l∥2l的充要条件是1k=2k,且1b=2b;1l⊥2l的充要条件是1k2k=-1.(三)圆的有关问题1.圆的标准方程222)()(rbyax(r>0),称为圆的标准方程,其圆心坐标为(a,b),半径为r.特别地,当圆心在原点(0,0),半径为r时,圆的方程为222ryx.2.圆的一般方程022FEyDxyx(FED422>0)称为圆的一般方程,其圆心坐标为(2D,2E),半径为FEDr42122.-2-当FED422=0时,方程表示一个点(2D,2E);当FED422<0时,方程不表示任何图形.3.圆的参数方程圆的普通方程与参数方程之间有如下关系:222ryxcossinxryr(θ为参数)222)()(rbyaxcossinxarybr(θ为参数)(五)椭圆的简单几何性质1.椭圆的几何性质:设椭圆方程为12222byax(a>b>0).⑴范围:-a≤x≤a,-b≤x≤b,所以椭圆位于直线x=a和y=b所围成的矩形里.⑵对称性:分别关于x轴、y轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心.⑶顶点:有四个1A(-a,0)、2A(a,0)1B(0,-b)、2B(0,b).线段1A2A、1B2B分别叫做椭圆的长轴和短轴.它们的长分别等于2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长.所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.⑷离心率:椭圆的焦距与长轴长的比ace叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e<1.e越接近于1时,椭圆越扁;反之,e越接近于0时,椭圆就越接近于圆.2.椭圆的第二定义⑴定义:平面内动点M与一个顶点的距离和它到一条定直线的距离的比是常数ace(e<1=时,这个动点的轨迹是椭圆.-3-⑵准线:根据椭圆的对称性,12222byax(a>b>0)的准线有两条,它们的方程(六)椭圆的参数方程椭圆12222byax(a>b>0)的参数方程为cossinxayb(θ为参数).说明⑴这里参数θ叫做椭圆的离心角.椭圆上点P的离心角θ与直线OP的倾斜角α不同:tantanab;⑵椭圆的参数方程可以由方程12222byax与三角恒等式1sincos22相比较而得到,所以椭圆的参数方程的实质是三角代换.(七)双曲线及其标准方程1.双曲线的定义:平面内与两个定点1F、2F的距离的差的绝对值等于常数2a(小于|1F2F|)的动点M的轨迹叫做双曲线.在这个定义中,要注意条件2a<|1F2F|,这一条件可以用“三角形的两边之差小于第三边”加以理解.若2a=|1F2F|,则动点的轨迹是两条射线;若2a>|1F2F|,则无轨迹.若1MF<2MF时,动点M的轨迹仅为双曲线的一个分支,又若1MF>2MF时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.2.双曲线的标准方程:12222byax和12222bxay(a>0,b>0).这里222acb,其中|1F2F|=2c.要注意这里的a、b、c及它们之间的关系与椭圆中的异同.3.双曲线的标准方程判别方法是:如果2x项的系数是正数,则焦点在x轴上;如果2y项的系数是正数,则焦点在y轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.4.求双曲线的标准方程,应注意两个问题:⑴正确判断焦点的位置;⑵设出标准方程后,运用待定系数法求解.-4-(八)双曲线的简单几何性质1.双曲线12222byax的实轴长为2a,虚轴长为2b,离心率ace>1,离心率e越大,双曲线的开口越大.2.双曲线12222byax的渐近线方程为xaby或表示为02222byax.若已知双曲线的渐近线方程是xnmy,即0nymx,那么双曲线的方程具有以下形式:kynxm2222,其中k是一个不为零的常数.3.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线12222byax,它的焦点坐标是(-c,0)和(c,0),与它们对应的准线方程分别是cax2和cax2.在双曲线中,a、b、c、e四个元素间有ace与222bac的关系,与椭圆一样确定双曲线的标准方程只要两个独立的条件.(九)抛物线的标准方程和几何性质1.抛物线的定义:平面内到一定点(F)和一条定直线(l)的距离相等的点的轨迹叫抛物线。这个定点F叫抛物线的焦点,这条定直线l叫抛物线的准线。需强调的是,点F不在直线l上,否则轨迹是过点F且与l垂直的直线,而不是抛物线。2.抛物线的方程有四种类型:22ypx、22ypx、22xpy、22xpy.对于以上四种方程:应注意掌握它们的规律:曲线的对称轴是哪个轴,方程中的该项即为一次项;一次项前面是正号则曲线的开口方向向x轴或y轴的正方向;一次项前面是负号则曲线的开口方向向x轴或y轴的负方向。3.抛物线的几何性质,以标准方程y2=2px为例(1)范围:x≥0;(2)对称轴:对称轴为y=0,由方程和图像均可以看出;(3)顶点:O(0,0),注:抛物线亦叫无心圆锥曲线(因为无中心);(4)离心率:e=1,由于e是常数,所以抛物线的形状变化是由方程中的p决定的;(5)准线方程2px;(6)焦半径公式:抛物线上一点P(x1,y1),F为抛物线的焦点,对于四种抛物线的焦半径公式分别为(p>0):22112:;2:22ppypxPFxypxPFx22112:;2:22ppxpyPFyxpyPFy(7)焦点弦长公式:对于过抛物线焦点的弦长,可以用焦半径公式推导出弦长公式。设过抛物线y2=2px(p>O)的焦点F的弦为AB,A(x1,y1),B(x2,y2),AB的倾斜角为α,则有①|AB|=x1+x2+p②22||sinpAB以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用“弦长公式”来求。(8)直线与抛物线的关系:直线与抛物线方程联立之后得到一元二次方程:x2+bx+c=0,当a≠0时,两者的位置关系的判定和椭圆、双曲线相同,用判别式法即可;但如果a=0,则-5-直线是抛物线的对称轴或是和对称轴平行的直线,此时,直线和抛物线相交,但只有一个公共点。(十)轨迹方程⑴曲线上的点的坐标都是这个方程的解;⑵以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线(图形或轨迹).注意事项1.⑴直线的斜率是一个非常重要的概念,斜率k反映了直线相对于x轴的倾斜程度.当斜率k存在时,直线方程通常用点斜式或斜截式表示,当斜率不存在时,直线方程为x=a(a∈R).因此,利用直线的点斜式或斜截式方程解题时,斜率k存在与否,要分别考虑.⑵直线的截距式是两点式的特例,a、b分别是直线在x轴、y轴上的截距,因为a≠0,b≠0,所以当直线平行于x轴、平行于y轴或直线经过原点,不能用截距式求出它的方程,而应选择其它形式求解.⑶求解直线方程的最后结果,如无特别强调,都应写成一般式.⑷当直线1l或2l的斜率不存在时,可以通过画图容易判定两条直线是否平行与垂直⑸在处理有关圆的问题,除了合理选择圆的方程,还要注意圆的对称性等几何性质的运用,这样可以简化计算.2.⑴用待定系数法求椭圆的标准方程时,要分清焦点在x轴上还是y轴上,还是两种都存在.⑵注意椭圆定义、性质的运用,熟练地进行a、b、c、e间的互求,并能根据所给的方程画出椭圆.⑶求双曲线的标准方程应注意两个问题:⑴正确判断焦点的位置;⑵设问题(光线的反射问题);注意证明曲线过定点方法(两种方法:特殊化、分离变量)2、注意二元二次方程表示圆的充要条件、善于利用切割线定理、相交弦定理、垂径定理等平面中圆的有关定理解题;注意将圆上动点到定点、定直线的距离的最值转化为圆心到它们的距离;注意圆的内接四边形的一些性质以及正弦定理、余弦定理。以过某点的线段为弦的面积最小的圆是以线段为直径,而面积最大时,是以该点为线段中点。3、注意圆与椭圆、三角、向量(注意利用加减法转化、利用模与夹角转化、然后考虑坐标化)结合;4、注意构建平面上的三点模型求最值,一般涉及“和”的问题有最小值,“差”的问题有最大值,只有当三点共线时才取得最值;5、熟练掌握求椭圆方程、双曲线方程、抛物线方程的方法:待定系数法或定义法,注意焦点位置的讨论,注意双曲线的渐近线方程:焦点在轴上时为,焦点在轴上时为;注意化抛物线方程为标准形式(即2p、p、的关系);注意利用比例思想,减少变量,不-6-知道焦点位置时,可设椭圆方程为。6、熟练利用圆锥曲线的第一、第二定义解题;熟练掌握求离心率的题型与方法,特别提醒在求圆锥曲线方程或离心率的问题时注意利用比例思想方法,减少变量。7、注意圆锥曲线中的最值等范围问题:产生不等式的条件一般有:①“法”;②离心率的范围;③自变量的范围;④曲线上的点到顶点、焦点、准线的范围;注意寻找两个变量的关系式,用一个变量表示另一个变量,化为单个变量,建立关于参数的目标函数,转化为函数的值域当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法,注意点是
本文标题:高考数学备考冲刺之易错点点睛系列专题 平面解析几何(学生版)
链接地址:https://www.777doc.com/doc-4234845 .html