您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2014年武汉市中考数学试题(完美答案解析版)
2014年武汉市初中毕业生学业考试数学试卷一、选择题(共10小题,每小题3分,满分30分)下列各题中均有四个备选答案中,其中有且只有一个是正确的1.在实数-2、0、2、3中,最小的实数是()A.-2B.0C.2D.32.若代数式3x在实数范围内有意义,则x的取值范围是()A.x≥-3B.x>3C.x≥3D.x≤33.光速约为300000千米/秒,将数字300000用科学记数法表示为()A.3×104B.3×105C.3×106D.30×1044.在一次中学生田径运动会上,参加调高的15名运动员的成绩如下表所示:成绩(m)1.501.601.651.701.751.80人数124332那么这些运动员跳高成绩的众数是()A.4B.1.75C.1.70D.1.655.下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.x3·x2=x5D.(x+1)2=x2+16.如图,线段AB两个端点的坐标分别为A(6,6)、B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3)B.(4,3)C.(3,1)D.(4,1)7.如图,由4个大小相同的正方体组合而成的几何体,其俯视图是()8.为了解某一路口某一时刻的汽车流量,小明同学10天中在同一时段统计该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为()A.9B.10C.12D.159.观察下列一组图形中的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,……,按此规律第5个图中共有点的个数是()A.31B.46C.51D.66ABCD10.如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E交PA、PB于C、D,若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()A.13125B.512C.1353D.1332二、填空题(共6小题,每小题3分,满分18分)11.计算:-2+(-3)=_______12.分解因式:a3-a=_______________13.如图,一个转盘被分成7个相同的扇形,颜色分别为红黄绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为_______14.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图所示,则这次越野跑的全程为______米15.如图,若双曲线xky与边长为5的等边△AOB的边OA、AB分别相交于C、D两点,且OC=3BD,则实数k的值为______16.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为______三、解答题(共9小题,共72分)17.解方程:xx32218.已知直线y=2x-b经过点(1,-1),求关于x的不等式2x-b≥0的解集19.如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD20.如图,在直角坐标系中,A(0,4)、C(3,0)(1)①画出线段AC关于y轴对称线段AB②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值21.袋中装有大小相同的2个红球和2个绿球(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球①求第一次摸到绿球,第二次摸到红球的概率②求两次摸到的球中有1个绿球和1个红球的概率(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果22.如图,AB是⊙O的直径,C、P是弧AB上两点,AB=13,AC=5(1)如图(1),若点P是弧AB的中点,求PA的长(2)如图(2),若点P是弧BC的中点,求PA得长23.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200-2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元(1)求出y与x的函数关系式(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果24.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ(1)若△BPQ与△ABC相似,求t的值(2)连接AQ、CP,若AQ⊥CP,求t的值(3)试证明:PQ的中点在△ABC的一条中位线上25.如图,已知直线AB:y=kx+2k+4与抛物线y=21x2交于A、B两点(1)直线AB总经过一个定点C,请直接写出点C坐标(2)当k=-21时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离2014年武汉市中考数学试卷答案解析版1、考点:实数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:解:-2<0<2<3,最小的实数是-2,故选:A.点评:本题考查了实数比较大小,正数大于0,0大于负数是解题关键.2、考点:二次根式有意义的条件.分析:先根据二次根式有意义的条件得出关于x的不等式,求出x的取值范围即可.解答:解:∵使x-3在实数范围内有意义,∴x-3≥0,解得x≥3.故选C.点评:本题考查的是二次根式有意义的条件,即被开方数大于等于0.3、考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将300000用科学记数法表示为:3×105.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4、考点:众数.分析:根据众数的定义找出出现次数最多的数即可.解答:解:∵1.65出现了4次,出现的次数最多,∴这些运动员跳高成绩的众数是1.65;故选D.点评:此题考查了众数,用到的知识点是众数的定义,众数是一组数据中出现次数最多的数.5、考点:幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.分析:根据幂的乘方与积的乘方、同底数幂的乘法法则及完全平方公式,分别进行各选项的判断即可.解答:解:A、(x3)2=x6,原式计算错误,故本选项错误;B、(2x)2=4x2,原式计算错误,故本选项错误;C、x3•x2=x5,原式计算正确,故本选项正确;D、(x+1)2=x2+2x+1,原式计算错误,故本选项错误;故选C.点评:本题考查了幂的乘方与积的乘方、同底数幂的运算,掌握运算法则是关键.6、考点:位似变换;坐标与图形性质.分析:利用位似图形的性质结合两图形的位似比进而得出C点坐标.解答:解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,∴端点C的坐标为:(3,3).故选:A.点评:此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.7、考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面看可得到一行正方形的个数为3,故选D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.8、考点:折线统计图;用样本估计总体.分析:先由折线统计图得出10天中在同一时段通过该路口的汽车数量超过200辆的天数,求出其频率,再利用样本估计总体的思想即可求解.解答:解:由图可知,10天中在同一时段通过该路口的汽车数量超过200辆的有4天,频率为:410=0.4,∴估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为:30×0.4=12(天).故选C.点评:本题考查了折线统计图及用样本估计总体的思想,读懂统计图,从统计图中得到必要的信息是解决问题的关键.9、考点:规律型:图形的变化类分析:由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…由此规律得出第n个图有1+1×3+2×3+3×3+…+3n个点.解答:解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…第n个图有1+1×3+2×3+3×3+…+3n个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故选:B.点评:此题考查图形的变化规律,找出图形之间的数字运算规律,利用规律解决问题.10、考点:切线的性质;相似三角形的判定与性质;锐角三角函数的定义.分析:(1)连接OA、OB、OP,延长BO交PA的延长线于点F.利用切线求得CA=CE,DB=DE,PA=PB再得出PA=PB=32r.利用Rt△BFP∽RT△OAF得出AF=23FB,在RT△FBP中,利用勾股定理求出BF,再求tan∠APB的值即可.解答:解:连接OA、OB、OP,延长BO交PA的延长线于点F.∵PA,PB切⊙O于A、B两点,CD切⊙O于点E∴∠OAP=∠OBP=90°,CA=CE,DB=DE,PA=PB,∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,∴PA=PB=.在Rt△BFP和Rt△OAF中,,∴Rt△BFP∽RT△OAF.∴===,∴AF=FB,在Rt△FBP中,∵PF2﹣PB2=FB2∴(PA+AF)2﹣PB2=FB2∴(r+BF)2﹣()2=BF2,解得BF=r,∴tan∠APB===,故选:B.点评:本题主要考查了切线的性质,相似三角形及三角函数的定义,解决本题的关键是切线与相似三角形相结合,找准线段及角的关系.11、考点:有理数的加法分析:根据有理数的加法法则求出即可.解答:解:(﹣2)+(﹣3)=﹣5,故答案为:﹣5.点评:本题考查了有理数加法的应用,注意:同号两数相加,取原来的符号,并把绝对值相加.12、考点:提公因式法与公式法的综合运用分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.13、考点:概率公式分析:由一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,红色的有3个扇形,直接利用概率公式求解即可求得答案.解答:解:∵一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,红色的有3个扇形,∴指针指向红色的概率为:.故答案为:.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.14、考点:一次函数的应用分析:设小明的速度为a米/秒,小刚的速度为b米/秒,由行程问题的数量关系建立方程组求出其解即可.解答:解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得:,∴这次越野跑的全程为:1600+300×2=2200米.故答案为:2200.点评:本题考查了行程问题的数量关系的运用,二元一次方程组的解法的运用,解答时由函数图象的数量关系建立方程组是关键.15、考点:反比例函数图象上点的坐标特征;等边三角形的性质分析:过点C作CE⊥
本文标题:2014年武汉市中考数学试题(完美答案解析版)
链接地址:https://www.777doc.com/doc-4234977 .html