您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 工作范文 > 模电指导书(1-3)
1实验一常用电子仪器的使用一、实验目的1.学习电子电路实验中常用的电子仪器——示波器、函数信号发生器、直流稳压电源、交流毫伏表、频率计等的主要技术指标、性能及正确使用方法。2.初步掌握用双踪示波器观察正弦信号波形和读取波形参数的方法。二、实验原理在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表及频率计等。它们和万用电表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图1-1所示。接线时应注意,为防止外界干扰,各仪器的共公接地端应连接在一起,称共地。信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。图1-1模拟电子电路中常用电子仪器布局图1.示波器示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种参数的测量。现着重指出下列几点:1)寻找扫描光迹将示波器Y轴显示方式置“Y1”或“Y2”,输入耦合方式置“GND”,开机预热后,若在显示屏上不出现光点和扫描基线,可按下列操作去找到扫描线:①适当调节亮度旋钮。②触发方式开关置“自动”。③适当调节垂直()、水平()“位移”旋钮,使扫描光迹位于屏幕中央。(若示波器设有“寻迹”按键,可按下“寻迹”按键,判断光迹偏移基线的方向。)2)双踪示波器一般有五种显示方式,即“Y1”、“Y2”、“Y1+Y2”三种单踪显示方式和“交替”“断续”二种双踪显示方式。“交替”显示一般适宜于输入信号频率较高时使用。“断续”显示一般适宜于输入信号频率较底时使用。3)为了显示稳定的被测信号波形,“触发源选择”开关一般选为“内”触发,使扫描触发信号取自示波器内部的Y通道。24)触发方式开关通常先置于“自动”调出波形后,若被显示的波形不稳定,可置触发方式开关于“常态”,通过调节“触发电平”旋钮找到合适的触发电压,使被测试的波形稳定地显示在示波器屏幕上。有时,由于选择了较慢的扫描速率,显示屏上将会出现闪烁的光迹,但被测信号的波形不在X轴方向左右移动,这样的现象仍属于稳定显示。5)适当调节“扫描速率”开关及“Y轴灵敏度”开关使屏幕上显示一~二个周期的被测信号波形。在测量幅值时,应注意将“Y轴灵敏度微调”旋钮置于“校准”位置,即顺时针旋到底,且听到关的声音。在测量周期时,应注意将“X轴扫速微调”旋钮置于“校准”位置,即顺时针旋到底,且听到关的声音。还要注意“扩展”旋钮的位置。根据被测波形在屏幕坐标刻度上垂直方向所占的格数(div或cm)与“Y轴灵敏度”开关指示值(v/div)的乘积,即可算得信号幅值的实测值。根据被测信号波形一个周期在屏幕坐标刻度水平方向所占的格数(div或cm)与“扫速”开关指示值(t/div)的乘积,即可算得信号频率的实测值。2.函数信号发生器函数信号发生器按需要输出正弦波、方波、三角波三种信号波形。输出电压最大可达20VP-P。通过输出衰减开关和输出幅度调节旋钮,可使输出电压在毫伏级到伏级范围内连续调节。函数信号发生器的输出信号频率可以通过频率分档开关进行调节。函数信号发生器作为信号源,它的输出端不允许短路。3.交流毫伏表交流毫伏表只能在其工作频率范围之内,用来测量正弦交流电压的有效值。为了防止过载而损坏,测量前一般先把量程开关置于量程较大位置上,然后在测量中逐档减小量程。三、实验设备与器件1.函数信号发生器2.双踪示波器3.交流毫伏表四、实验内容1、用机内校正信号对示波器进行自检。1)扫描基线调节将示波器的显示方式开关置于“单踪”显示(Y1或Y2),输入耦合方式开关置“GND”,触发方式开关置于“自动”。开启电源开关后,调节“辉度”、“聚焦”、“辅助聚焦”等旋钮,使荧光屏上显示一条细而且亮度适中的扫描基线。然后调节“X轴位移”()和“Y轴位移”()旋钮,使扫描线位于屏幕中央,并且能上下左右移动自如。2)测试“校正信号”波形的幅度、频率将示波器的“校正信号”通过专用电缆线引入选定的Y通道(Y1或Y2),将Y轴输入耦合方式开关置于“AC”或“DC”,触发源选择开关置“内”,内触发源选择开关置“Y1”或“Y2”。3调节X轴“扫描速率”开关(t/div)和Y轴“输入灵敏度”开关(V/div),使示波器显示屏上显示出一个或数个周期稳定的方波波形。a.校准“校正信号”幅度将“y轴灵敏度微调”旋钮置“校准”位置,“y轴灵敏度”开关置适当位置,读取校正信号幅度,记入表1-1。表1-1标准值实测值幅度Up-p(V)频率f(KHz)上升沿时间μS下降沿时间μS注:不同型号示波器标准值有所不同,请按所使用示波器将标准值填入表格中。b.校准“校正信号”频率将“扫速微调”旋钮置“校准”位置,“扫速”开关置适当位置,读取校正信号周期,记入表1-1。c.测量“校正信号”的上升时间和下降时间调节“y轴灵敏度”开关及微调旋钮,并移动波形,使方波波形在垂直方向上正好占据中心轴上,且上、下对称,便于阅读。通过扫速开关逐级提高扫描速度,使波形在X轴方向扩展(必要时可以利用“扫速扩展”开关将波形再扩展10倍),并同时调节触发电平旋钮,从显示屏上清楚的读出上升时间和下降时间,记入表1-1。2、用示波器和交流毫伏表测量信号参数调节函数信号发生器有关旋钮,使输出频率分别为100Hz、1KHz、10KHz、100KHz,有效值均为1V(交流毫伏表测量值)的正弦波信号。改变示波器“扫速”开关及“Y轴灵敏度”开关等位置,测量信号源输出电压频率及峰峰值,记入表1-2。表1-2信号电压频率示波器测量值信号电压毫伏表读数(V)示波器测量值周期(ms)频率(Hz)峰峰值(V)有效值(V)100Hz1KHz10KHz100KHz43.测量两波形间相位差1)观察双踪显示波形“交替”与“断续”两种显示方式的特点Y1、Y2均不加输入信号,输入耦合方式置“GND”,扫速开关置扫速较低挡位(如0.5s/div挡)和扫速较高挡位(如5μS/div挡),把显示方式开关分别置“交替”和“断续”位置,观察两条扫描基线的显示特点,记录之。2)用双踪显示测量两波形间相位差①按图1-2连接实验电路,将函数信号发生器的输出电压调至频率为1KHz,幅值为2V的正弦波,经RC移相网络获得频率相同但相位不同的两路信号ui和uR,分别加到双踪示波器的Y1和Y2输入端。为便于稳定波形,比较两波形相位差,应使内触发信号取自被设定作为测量基准的一路信号。图1-2两波形间相位差测量电路②把显示方式开关置“交替”挡位,将Y1和Y2输入耦合方式开关置“⊥”挡位,调节Y1、Y2的()移位旋钮,使两条扫描基线重合。③将Y1、Y2输入耦合方式开关置“AC”挡位,调节触发电平、扫速开关及Y1、Y2灵敏度开关位置,使在荧屏上显示出易于观察的两个相位不同的正弦波形ui及uR,如图1-3所示。根据两波形在水平方向差距X,及信号周期XT,则可求得两波形相位差。图1-3双踪示波器显示两相位不同的正弦波50T360(div)XX(div)θ式中:XT——一周期所占格数X——两波形在X轴方向差距格数记录两波形相位差于表1-3。表1-3一周期格数两波形X轴差距格数相位差实测值计算值XT=X=θ=θ=为数读和计算方便,可适当调节扫速开关及微调旋钮,使波形一周期占整数格。五、实验总结1.整理实验数据,并进行分析。2.问题讨论1)如何操纵示波器有关旋钮,以便从示波器显示屏上观察到稳定、清晰的波形?2)用双踪显示波形,并要求比较相位时,为在显示屏上得到稳定波形,应怎样选择下列开关的位置?a)显示方式选择(Y1;Y2;Y1+Y2;交替;断续)b)触发方式(常态;自动)c)触发源选择(内;外)d)内触发源选择(Y1、Y2、交替)3.函数信号发生器有哪几种输出波形?它的输出端能否短接,如用屏蔽线作为输出引线,则屏蔽层一端应该接在哪个接线柱上?4.交流毫伏表是用来测量正弦波电压还是非正弦波电压?它的表头指示值是被测信号的什么数值?它是否可以用来测量直流电压的大小?六、预习要求1.阅读实验附录中有关示波器部分内容。2.已知C=0.01μf、R=10K,计算图1-2RC移相网络的阻抗角θ。6实验二晶体管共射极单管放大器一、实验目的1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。3.熟悉常用电子仪器及模拟电路实验设备的使用。二、实验原理图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用RB1和RB2组成的分压电路,并在发射极中接有电阻RE,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号ui后,在放大器的输出端便可得到一个与ui相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。图2-1共射极单管放大器实验电路在图2-1电路中,当流过偏置电阻RB1和RB2的电流远大于晶体管T的基极电流IB时(一般5~10倍),则它的静态工作点可用下式估算CCB2B1B1BURRRUUCE=UCC-IC(RC+RE)电压放大倍数beLCVrRRβA//输入电阻Ri=RB1//RB2//rbe输出电阻RO≈RC由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌CEBEBEIRUUI7握必要的测量和调试技术。放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。1.放大器静态工作点的测量与调试1)静态工作点的测量测量放大器的静态工作点,应在输入信号ui=0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流IC以及各电极对地的电位UB、UC和UE。一般实验中,为了避免断开集电极,所以采用测量电压UE或UC,然后算出IC的方法,例如,只要测出UE,即可用EEECRUII算出IC(也可根据CCCCCRUUI,由UC确定IC),同时也能算出UBE=UB-UE,UCE=UC-UE。为了减小误差,提高测量精度,应选用内阻较高的直流电压表。2)静态工作点的调试放大器静态工作点的调试是指对管子集电极电流IC(或UCE)的调整与测试。静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时uO的负半周将被削底,如图2-2(a)所示;如工作点偏低则易产生截止失真,即uO的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的输入电压ui,检查输出电压uO的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。(a)(b)图2-2静态工作点对uO波形失真的影响改变电路参数UCC、RC、RB(RB1、RB2)都会引起静态工作点的变化,如图2-3所示。但通常多采用调节偏置电阻RB2的方法来改变静态工作点,如减小RB2,则可使静态工作点提高等。图2-3电路参数对静态工作点的影响8最后还要说明的是,上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如输入信号幅度很小,即使工作点较高或较低也不一定会出现失真。所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。如需满足较大信号幅度的要求,静态工作点最好尽量靠近交流负载线的中点。2.放大器动态指标测试放大器动态指标包括电压放大倍数、输入电阻、输出电阻、最大不失真输出电压(动态范围)和通频带等。1)电压放大倍数AV
本文标题:模电指导书(1-3)
链接地址:https://www.777doc.com/doc-4239386 .html