您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 中级微观经济学作业及答案
中级微观经济学第一次作业答案1、假设政府对一个每月收入400美元的贫困家庭进行补贴。有三种方案:第一,允许该家庭购买400美元的食品券,单位美元食品券的价格为0.5;第二,政府直接发给该家庭200美元的食品券补贴;第三,政府直接发给该家庭200美元的货币补贴。画出三种方案下该家庭的预算线,解释该家庭的最优选择,并分析三种方案的优劣。解:如上图所示,横轴表示花费在食品上的货币数量,纵轴表示花费在其他商品上的货币量,初始预算线为CD。第一种补贴方案下,该家庭可以用200美元购买400美元的食品券,因此预算线变为折线CE1B,最优选择为E1点,效用水平为U1;第二种补贴方案下,政府直接发放给该家庭200美元食品券补贴,因此预算线变为CE2B,最优选择为E2点,效用水平为U2;第三种补贴方案下,政府直接发放给该家庭200美元的货币补贴,因此预算线直接平移到AB,最优选择为E3点,效用水平为U3。综上所述,因为U3U2U1,所以对于该家庭而言,第三种方案最好,第二种方案次之,第一种方案最差。2、请画出以下各位消费者对两种商品(咖啡和热茶)的无差异曲线。(1)消费者A喜欢喝咖啡,对喝热茶无所谓;(2)消费者B喜欢1杯热茶和1杯咖啡一起喝;(3)消费者C认为,在任何情况下,1杯热茶和2杯咖啡是无差异的;(4)消费者D喜欢喝咖啡,讨厌喝热茶。解:(1)(2)(3)(4)200400B200CADU3U2U1E1E2E3F(美元)Y(美元)U1U2U3咖啡热茶咖啡热茶U1U2U3热茶咖啡U1U2U3热茶咖啡U1U2U33、写出下列情形的效用函数,画出无差异曲线,并在给定价格(p1,p2)和收入(m)的情形下求最优解。(1)x1=一元纸币,x2=五元纸币。()(2)x1=一杯咖啡,x2=一勺糖,消费者喜欢在每杯咖啡加两勺糖。12121,min,2uxxxx,1122mxpp,21222mxpp解:(1)当p1/p20.2时,x1=0,x2=m/p2;当p1/p2=0.2时,(){()}当p1/p20.2时,x1=m/p1,x2=0(2){解得:,4、假设某消费者的效用函数为:()试问:给定商品1和商品2的价格为和,如果该消费者的收入足够高,则收入的变化是否会导致该消费者对商品1的消费,并解释原因。解:该消费者追求效用最大化,则有:s.t.则拉格朗日辅助函数为:()效用最大化的一阶条件为:{解上述方程可得:所以,如果消费者的收入足够高,则收入的变化不会导致该消费者对商品1消费的变化。5、一个消费者被观察到当他面临的价格为时,购买量为;另一次,当他面临的价格为时,他的购买量为。请问他的行为符合显示性偏好弱公理吗?请解释原因。解:他的行为符合显示性偏好弱公理。显示偏好弱公理指的是如果(x1,x2)被直接显示偏好于(y1,y2),且(x1,x2)和(y1,y2)不相同,那么,(y1,y2)就不可能被直接显示偏好于(x1,x2)。换句话说,假定一个消费束(x1,x2)是按价格(p1,p2)购买的,另一个消费束是按价格(q1,q2)购买的,只要有p1x1+p2x2=p1y1+p2y2,就不可能再有q1x1+q2x2=q1y1+q2y2。在本题中,当价格(2,6)时,20*2+10*618*2+4*6说明消费者有能力购买(18,4)这个消费束,却选择了(20,10)这个消费束。这表明,在价格为(2,6)时,(20,10)比(18,4)更受该消费者偏好;当价格为(3,5)时,他选择了消费束(18,4),并且3*18+5*43*20+5*10,说明在价格为(3,5)时,消费者(20,10)是该消费者支付不起的。所以他的行为符合显示偏好弱公理。6、我们用和表示消费者对商品和的消费数量。现在给定消费者的效用函数为(),两种商品的价分别为和,消费者的收入为。(1)求该消费者将收入的多大比例分别用于消费和;(2)求消费者对和的需求函数;(3)当消费者均衡时,两种商品的需求价格弹性是多少?解:(1)消费者追求效用最大化,则有:s.t.效用最大化时,边际效用之比等于价格之比,则有:解得:,,则收入用于商品1的比例为:()收入用于商品2的比例为:()(2)由(1)可知两种商品各自的需求函数为:(),()(3)商品1的需求价格弹性为:()同理,商品2的需求价格弹性为:7、在下列效用函数形式里,哪些是效用函数的单调变换?(1)132vu;(2)2/1vu;(3)2/1vu;(4)vuln(5)veu;(6)2vu;(7)2vu,对于0v;(8)2vu,对于0v解:(1)、(4)、(5)、(7)8、某人的效用函数为,购买和两种商品,月收入为120元,。(1)为获得最大的效用,应如何选择商品和的组合;(2)货币的边际效用和总效用各是多少;(3)的价格提高30%,的价格不变,他必须增加多少收入才能保持原有效用不变。解:(1)由效用最大化原则有:s.t.拉格朗日函数为:()效用最大化的一阶条件为:{解得:x=30,y=20(2)总效用为:货币的边际效用为:(3)若的价格提高30%,则。在新的价格之下,效用最大化的一阶条件为:{再加上方程:,可解得则收入应增加:9、假设某个学生的月收入为元,他对面包的需求函数为(),面包的价格为。(1)当面包的价格从上升到时,为使该学生仍然买得起原来的面包消费量,他的收入应该增加多少;(2)请计算面包价格上升的斯勒茨基(Slutsky)替代效应;(3)请计算收入效应。解:(1)该学生对面包的需求函数为(),当,时,该学生对面包的需求量为:。当价格从p=4上升到p’=5时,让使得该学生仍然买得起原来的面包消费量x=6,他的收入应该增加()。(2)为了使得该学生买得起原来的面包消费量,该学生所需的收入水平为:。将新的价格和新的收入水平带入到需求函数,可得:()。所以可得slutsky替代效应为:()()(3)收入效应反映的是因收入变化所导致的需求量的变化。所以当价格为,收入代入需求方程,可得(),所以,收入效应为:()()10、Dudley的效用函数是()(),其中R是他每天拥有的闲暇时间。他每天有16小时可用在工作和闲暇上,每天有20美元的非劳动收入。消费品的价格是每单位1美元。(a)如果Dudley每天愿意工作多少个小时都可以,并且工资是每小时10美元,他将会选择多少小时的闲暇?选择工作多少小时呢?(b)如果Dudley的非劳动收入降到每天5美元,而他的工资还是每小时10美元,他将会选择工作多少小时?(c)假设Dudley必须对他所有的收入支付20%的收入税,并假设他的税前工资还是10美元一小时,税前非劳动收入还是每天20美元。他将会选择工作多少小时?解:(1)由消费等于收入恒等式,有:其中,C表示消费,m表示非劳动收入,L表示劳动时间,W表示工资水平。又由题意可得:将C和R代入到效用方程中可得:(,)()当m=20,W=10时,(,)()()解得:L=9(2)如果m=5,W=10,(,)()()解得:L=9(3)如果征收20%的收入税,则()(),(,)()()解得:L=8
本文标题:中级微观经济学作业及答案
链接地址:https://www.777doc.com/doc-4241097 .html