您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 航空数字化制造技术技术报告-齐鹏
—1—航空数字化制造技术齐鹏200808125摘要本文从我国航空数字化现状讲起,首先介绍了数字化总体框架研究的概念,设计要求,系统组成,基础环境,工作机制等内容,然后在实际应用层面着重介绍了MAZATROLFUSION640系统,并简单介绍了数字化装配过程仿真验证技术以及飞机数字化装配技术。关键词:数字化总体框架智能化网络化信息化数字化装配一、我国航空数字化现状我国的航空制造业数字化经过多年的发展,取得了一定的成效,在产品的三维数字化设计、数字样机应用、工装数字化定义、预装配、主要零件的数控加工,产品数字仿真与试验、工艺数值模拟与仿真、产品数据和制—2—造过程管理等方面有了较深入的应用,但是,我们也应清醒地认识到,产品全生命周期的信息通道尚未打通,数字化工程体系还未形成,数字化技术的巨大效能远未发挥。与发达国家相比我们还存在巨大差距,尽管我们在航空制造业实施了并行工程,但仍然停留在以产品为中心的产品研制理念,而发达国家已经转向以客户为中心的产品研制理念,即产品研制过程中,产品的目标从(可)制造性向服务性转化,采用面向产品全生命周期的管理模式。美国对于高风险的大型武器装备的研制,率先采用一体化产品与过程设计模式,将系统工程方法和新的质量工程方法相结合,并应用一系列决策支持过程,在计算机综合环境中集成,有效控制了产品的质量和风险。著名的JSF项目(新一代联合攻击战斗机)的研制,完全建立在网络化环境上,采用数字化企业集成技术,联合美国、英国、荷兰、丹麦、挪威、加拿大、意大利、新加坡、土耳其和以色列等几十个航空关联企业,提出“从设计到飞行全面数字化”的产品研制模式,用强势联合体来化解风险。目前,国家正在大力推进制造业的数字化。制造业企业急需从战略的高度,构造面向产品全生命周期的、—3—支持跨企业联合的数字化工程体系。本文根据相关的研究和实践,总结多年的应用成果,以航空制造业为背景,提出制造业数字化的总体框架,给制造业数字化应用平台的建设提供参考。二、航空制造业数字化总体框架研究(一)总体框架设计要求面对竞争激烈的市场大环境,制造业的唯一出路是在最短的时间内以最有效的方式生产出最能满足客户需要的产品。制造业企业间既有竞争又有联合,只有发挥各自的技术和资源优势,才能降低成本,分摊风险,共享市场。构建数字化工程体系是达到以上目的最有效的方法和手段。数字化工程体系的核心是信息共享和过程管理,因此,制造业数字化工程的总体框架必须能实现制造业企业内部和企业间的信息共享和过程控制。产品数据信息和产品生命周期相关的其他信息在各企业、各部门、各专业之间的顺畅流转,是产品研制顺利进行的重要保障。总体框架的设计要有利于实施全生命周期的产品数据管理,实现单一产品数据源,打通企—4—业间的信息流。过程管理的内涵是面向产品的管理,而不是面向企业(或组织)的管理。它需要数字化体系能够把设计、试验和制造部门与客户、供应商、协作单位联系起来,采用IPT组织的方法,优化产品研制流程,达到控制成本、降低风险、缩短产品研制周期的目标。针对当今信息化技术的快速发展,要求制造业数字化体系能够支持企业业务变更的需求,支持流程再造和组织重构的要求,满足通用性和专业性的要求。(二)数字化框架组成1.数字样机系统数字样机是产品的数字化描述,贯穿于产品从概念设计到售后服务的全生命周期,是工程设计、功能分析、试验仿真、加工制造、直至产品售后服务等的信息交换媒介。随着产品研制的不断深入,数字样机由表及里,由粗到细,成熟度不断增长。数字样机系统生成了数字样机,也提供了对数字样机进行分析、评估、仿真等功能。2.产品数据管理系统产品数据管理系统管理并维护与产品相关的所有工—5—程数据,包括产品的几何模型、说明性文档、技术状态数据等,产品数据管理同时也管理与维护产品数据间的关联信息,如产品结构、构型、版本等信息。3.工程协同系统工程协同系统是由数字化设计系统、数字化试验系统、数字化制造系统等业务系统所组成的集合,从信息化的意义上来说,业务系统就是使能工具。工程协同系统是工程数据的主要生成源,各个业务系统通过数字样机进行数据交换。该系统包括:(1)数字化设计系统:针对航空制造业业务需求,集成所需的专业业务软件,包含产品设计的各种专业软件和工具,专业仿真软件工具,设计评估工具等。(2)数字化试验系统:针对航空制造业业务需求,集成所需的专业试验系统包括:数字化强度试验、飞控试验、系统试验、电气试验、航电武器试验、地面联合试验等试验业务系统。(3)数字化制造系统:针对航空制造业业务需求,集成所需的专业制造系统,包括:数控加工系统、数字化复合材料生产线、数字化钣金生产线、数字化切削生产线、数字化工装生产线、数字化焊接生产线、数字化—6—电缆管线生产线等制造业务系统。(4)数据转换接口:业务系统之间的数据格式转换接口。4.工程过程控制系统工程过程控制系统包括基于数字样机的并行过程控制系统和项目管理系统。并行过程控制系统实现了设计、试验、制造等业务系统的过程集成。并行过程控制系统确定了一个任务应涉及哪些业务系统,并通过控制数字样机的成熟度,确定业务系统是否启用,是否能够访问数字样机,同时并行过程控制系统也监视业务系统的状态,从而使之围绕特定任务协调有序地运行。项目管理系统完成项目任务的计划、资源调配、IPT组织管理、进度和质量监控等管理控制过程。5.工程支持系统工程支持系统主要向工程协同系统提供工程过程中所需的支持信息,包括质量、五性(可靠性、可维修性、可测性、保障性和安全性)、标准、适航、情报资料、研制知识等信息,这些信息可以是模板、文件以及其他对象等形式。该系统同时也提供了质量、五性、标准和适—7—航等方面的控制和评估功能。(三)基础环境基础环境包括计算机系统、网络系统和数据库系统等,是企业内部和企业间信息交换的基础。(四)总体框架工作机制产品研制业务关系表现在业务数据关系和业务流程关系两个方面,从信息化的角度来看,总体框架应实现信息的集成和过程的集成。因此,制造业数字化的总体框架由纵向的工程过程控制、横向的工程工作面和作为支撑的基础环境所构成,其中工程过程控制实现过程的集成,工程工作面实现信息的集成。工程工作面是产品研制过程的时间断面。在工程工作面中,工程协同系统是工程研制中数字化设计、试验和生产等方面业务系统的集合;数字样机系统对产品数据进行映射生成了数字样机;产品数据管理系统负责管理产品相关的所有数据;工程支持系统提供工程支持信息的共享。工程协同系统中的业务系统之间的数据交换是通过数字样机来进行的;数字样机系统根据业务系统的不同要求,对产品数据管理系统所管理的产品数据进行过滤,—8—生成相应的数字样机;工程协同系统可以从工程支持系统中得到质量、标准等信息。工程工作面实现了信息的集成。工程过程控制分为两条主线:一条主线是基于数字样机的并行过程,所控制的对象是工程协同系统中的各个业务系统,并行过程采用成熟度控制的机制;另一条主线是项目管理过程,采用任务节点控制的机制。项目管理过程控制的是点,而并行过程控制的是线,并行过程由项目管理过程触发,工程过程控制实现了过程的集成。项目管理过程可以理解为对工程过程的任务节点(里程碑)的控制过程,任务节点主要描述了任务的进度、资源需求和任务间的关系等。在一个任务开始前,需要配置相应的资源(包括人员和物料、设备等),由IPT小组执行此项任务。通常,一个任务是否完成,是由并行过程控制系统返回的状态来确定的,对里程碑(阶段评审)来说,需要阶段评审的结论来支持。阶段评审的内容可以包括:质量、标准、五性和用户意见等方面。当一个任务结束后,为之所配置的资源将被释放,随着一个新任务的启动,新的资源配置也将完成。因此,—9—项目管理过程同时也包含了IPT组织的动态变化过程。按照过程定义,并行过程确定哪些业务系统参与任务的执行。业务系统之间的协同是以数字样机为共同的信息基础,并行过程通过控制数字样机的成熟度,来限制各个业务系统访问数字样机。并行过程监控各业务系统的运行状态,并根据数字样机的成熟度、过程定义实现对各个业务系统的协同控制。工程工作面、工程过程控制和基础环境,三个部分构成了以数字样机为中心、以产品数据管理为手段、以工程过程控制为主线的制造业数字化总体框架。三、数字化制造助力航空制造业发展随着电子计算机软硬件技术和网络技术的发展,在产品的设计开发、虚拟制造、工厂的管理软件和电子商务方面,都有大量比较成熟的硬件平台和软件供使用,然而,产品最重要的一个环节--生产制造方面,目前来讲还是一个瓶颈,制约了数字化的应用和发展。在这种大的环境和背景下,对生产制造关键环节的信息化要求就越来越迫切。数控机床虽然经历了几十年—10—的发展,无论从功能还是从精度来讲都已经发展到了一个新的高度,但是长久以来,数控机床网络化的应用更多的还是停留在由计算机向机床传输程序、机床参数和加工参数等原始的应用内容方面,而机床的工作状态如何我们无法知晓。很显然,这样的数控机床很难跟上这个时代的步伐,无法适应当今智能化,网络化和信息化方面的需要。为了适应发展的需要,MAZATROLFUSION640系统应用而生:(一)MAZATROLFUSION640系统简介MAZATROLFUSION640系统是MAZAK公司开发的新一代数控系统。该系统将CNC和PC紧密地融合起来,兼具传统CNC和现代PC双方面的优势,使很多智能化和网络化的功能得以实现。采用人机对话式编程方式的MAZATROL640系统对编程操作人员的要求大大地降低,同时也提高了编程的准确性和效率。操作者只需要输人被加工零件的材质、使用的刀具材质、加工部位的最终要求、被加工工件的形状数据和工件的安装位置,数控系统就会通过内置的专家系统自动决定零件的加工参数(比如主轴转速、进给速度等)以及自动计算并确定刀具路径,避免了绝大部分的—11—编程错误。系统还有三维实体模拟加工功能,可以立即对编程的结果加以验证;系统的加工向导预测功能可以根据切削条件计算出主轴的功率负荷和加工时间,据此,编程操作人员可以对程序进行进一步的优化,以平衡主轴输出负荷,提高加工效率。系统的语音提示和导航功能可以在开机后用语音问候操作者,提示操作者机床的状态并做安全确认,防止出现误操作;震动抑制功能可以将机床加减速引起的机械震动消除,从而提高零件的加工质量和刀具的使用寿命;同时,可以进行虚拟加工,在机床、工件、刀具和夹具的3D模型下实现加工程序与实际加工环境一样的模拟加工,从而在实际加工前就可以检查加工中可能出现的干涉,还有智能安全保护功能,在手动操作时可以进行干涉确认,在干涉发生前停止机床,不用担心发生撞车;虚拟加工、自动加工过程中的干涉检查,使得编程更加放心、快捷、简单。另外,刀其的寿命管理功能、机床维护保养提示和在线服务等智能化的功能也为机床的使用和维护提供了很好的手段。(二)智能生产中心CPC(CyberProductionCenter)—12—管理软件随着企业的不断发展和生产规模的不断扩大,企业需要更多的生产设备来满足生产的需要,但是随着生产设备的增多,生产管理的工作量也越来越大,因此,MAZAK公司在单机的智能化网络化基础上,开发了智能生产中心CPC管理软件,一套软件可以管理多达250台的数控机床。该软件包含4个独立的模块:加工程序自动编制(CAMWARE)、智能化日程管理(CyberScheduler),智能刀具管理(CyberToolManager)和智能监控(CyberMonitor)。加工程序自动编制是一种易学易用的人机对话式零件加工自动编程系统,该系统使用通用的DXE或者IGES格式从CAD图纸中获取零件的形状信息,根据每台加工设备的设备信息和工厂内的刀具数据库刀具信息,通过简单的操作针对现有的设备和刀具配置生成零件的加工程序以及刀具需求、加工时间等数据,并通过网络将这些数据直接传送到相应的加工单元和管理系统软件。这些数据就可以自动生成工时成本,进行刀具准备,实现了加工工艺编制、加工程序编制、工艺路线安排和刀具资源配置的并行作业。而且该软件还有加工程序管理方—
本文标题:航空数字化制造技术技术报告-齐鹏
链接地址:https://www.777doc.com/doc-4244194 .html