您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 《等边三角形》练习题(附答案)
1《等边三角形》练习题1.(2012•深圳)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6B.12C.32D.642.(2012•凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°3.(2012•荆门)如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为()A.2B.2C.D.34.(2011•南平)边长为4的正三角形的高为()A.2B.4C.D.25.(2010•随州)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.B.C.D.不能确定6.(2009•攀枝花)如图所示,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F,则∠DFC的度数为()A.60°B.45°C.40°D.30°7.(2007•绵阳)如图,在正方形ABCD的外侧,作等边△ADE,BE、CE分别交AD于G、H,设△CDH、△GHE的面积分别为S1、S2,则()A.3S1=2S2B.2S1=3S2C.2S1=S2D.S1=2S28.(2007•娄底)如图,△ABC是边长为6cm的等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积为()A.4cm2B.2cm2C.3cm2D.3cm229.(2006•天津)如图,A、C、B三点在同一条直线上,△DAC和△EBC都是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个10.(2006•南宁)如图是一个等边三角形木框,甲虫P在边框AC上爬行(A,C端点除外),设甲虫P到另外两边的距离之和为d,等边三角形ABC的高为h,则d与h的大小关系是()A.d>hB.d<hC.d=hD.无法确定11.(2007•南充)一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,再由B地向北偏西20°的方向行驶40海里到达C地,则A、C两地相距()A.30海里B.40海里C.50海里D.60海里12.(2006•曲靖)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°13.(2011•茂名)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=_________度.14.(2008•日照)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60度.恒成立的结论有_________.(把你认为正确的序号都填上)15.(2005•扬州)如图,将边长为4的等边△ABC,沿x轴向左平移2个单位后,得到△A′B′C′,则点A′的坐标为_________.16.(2004•茂名)如图,正三角形A1B1C1的边长为1,△A1B1C1的三条中位线组成△A2B2C2,△A2B2C2的三条中线又组成△A3B3C3,…,如此类推,得到△AnBnCn.则:(1)△A3B3C3的边长a3=_________;(2)△AnBnCn的边长an=_________(其中n为正整数).17.(2006•嘉峪关)△ABC为等边三角形,D、E、F分别在边BC、CA、AB上,且AE=CD=BF,则△DEF为_________三角形.318.(1999•广州)如图,以A,B两点为其中两个顶点作位置不同的等边三角形,最多可以作出_________个.19.如图所示,P是等边三角形ABC内一点,将△ABP绕点B顺时针方向旋转60°,得到△CBP′,若PB=3,则PP′=_________.20.(2009•浙江)如图,在边长为4的正三角形ABC中,AD⊥BC于点D,以AD为一边向右作正三角形ADE.(1)求△ABC的面积S;(2)判断AC、DE的位置关系,并给出证明.21.(2009•辽阳)如图,△ABC为正三角形,D为边BA延长线上一点,连接CD,以CD为一边作正三角形CDE,连接AE,判断AE与BC的位置关系,并说明理由.22.(2008•绍兴)附加题,学完“几何的回顾”一章后,老师布置了一道思考题:如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60度.(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?③若将题中的条件“点M,N分别在正三角形ABC的BC,CA边上”改为“点M,N分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?…请你作出判断,在下列横线上填写“是”或“否”:①_________;②_________;③_________.并对②,③的判断,选择一个给出证明.423.(2007•河北)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立(不用说明理由).24.(2004•苏州)已知:如图,正△ABC的边长为a,D为AC边上的一个动点,延长AB至E,使BE=CD,连接DE,交BC于点P.(1)求证:DP=PE;(2)若D为AC的中点,求BP的长.5《全等三角形》练习参考答案与试题解析1.C2.C3.C4.D5.B6.A7.A9.B10.C11.B12.B13.∠E=15度.14.①②③⑤.15..16.a3=;△AnBnCn的边长an=(或21﹣n)17.等边三角形.18.2个.19PP′=3.20.解:(1)在正△ABC中,AD=4×,(2分)∴S=BC×AD=×4×2=4.(3分)(2)AC、DE的位置关系:AC⊥DE.(1分)在△CDF中,∵∠CDE=90°﹣∠ADE=30°,(2分)∴∠CFD=180°﹣∠C﹣∠CDE=180°﹣60°﹣30°=90°.∴AC⊥DE.(3分)(注:其它方法酌情给分).21.解:AE∥BC.理由如下:∵△ABC与△CDE为正三角形,∴BC=AC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,∴△BCD≌△ACE,∴∠B=∠EAC,∵∠B=∠ACB,∴∠EAC=∠ACB,∴AE∥BC.22.请你作出判断,在下列横线上填写“是”或“否”:①是;②是;③否.并对②,③的判断,选择一个给出证明.(1)证明:在△ABM和△BCN中,,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠BQM=∠BAQ+∠ABQ=∠MBQ+∠ABQ=60°.(2)①是;②是;③否.②的证明:如图,在△ACM和△BAN中,,∴△ACM≌△BAN,∴∠AMC=∠BNA,∴∠NQA=∠NBC+∠BMQ=∠NBC+∠BNA=180°﹣60°=120°,∴∠BQM=60°.6③的证明:如图,在Rt△ABM和Rt△BCN中,,∴Rt△ABM≌Rt△BCN,∴∠AMB=∠BNC.又∠NBM+∠BNC=90°,∴∠QBM+∠QMB=90°,∴∠BQM=90°,即∠BQM≠60°.23解:(1)BF=CG;证明:在△ABF和△ACG中∵∠F=∠G=90°,∠FAB=∠GAC,AB=AC∴△ABF≌△ACG(AAS)∴BF=CG;(2)DE+DF=CG;证明:过点D作DH⊥CG于点H(如图2)∵DE⊥BA于点E,∠G=90°,DH⊥CG∴四边形EDHG为矩形∴DE=HG,DH∥BG∴∠GBC=∠HDC∵AB=AC∴∠FCD=∠GBC=∠HDC又∵∠F=∠DHC=90°,CD=DC∴△FDC≌△HCD(AAS)∴DF=CH∴GH+CH=DE+DF=CG,即DE+DF=CG;(3)仍然成立.证明:过点D作DH⊥CG于点H(如图3)∵DE⊥BA于点E,∠G=90°,DH⊥CG∴四边形EDHG为矩形,∴DE=HG,DH∥BG,∴∠GBC=∠HDC,∵AB=AC,∴∠FCD=∠GBC=∠HDC,又∵∠F=∠DHC=90°,CD=DC,∴△FDC≌△HCD(AAS)7∴DF=CH,∴GH+CH=DE+DF=CG,即DE+DF=CG.24.(1)证明:过点D作DF∥AB,交BC于F.∵△ABC为正三角形,∴∠CDF=∠A=60°.∴△CDF为正三角形.∴DF=CD.又BE=CD,∴BE=DF.又DF∥AB,∴∠PEB=∠PDF.∵在△DFP和△EBP中,∵,∴△DFP≌△EBP(AAS).∴DP=PE.(2)解:由(1)得△DFP≌△EBP,可得FP=BP.∵D为AC中点,DF∥AB,∴BF=BC=a.∴BP=BF=a.25.解:(1)当点P在△ABC内时,结论h1+h2+h3=h仍然成立.理由如下:过点P作BC的平行线,交AB于G,交AC于H,交AM于N,则可得结论h1+h2=AN.∵四边形MNPF是矩形,∴PF=MN,即h3=MN.∴h1+h2+h3=AN+MN=AM=h,即h1+h2+h3=h.(2)当点P在△ABC外时,结论h1+h2+h3=h不成立.此时,它们的关系是h1+h2﹣h3=h.理由如下:过点P作BC的平行线,与AB、AC、AM分别相交于G、H、N,则可得结论h1+h2=AN.∵四边形MNPF是矩形,∴PF=MN,即h3=MN.∴h1+h2﹣h3=AN﹣MN=AM=h,即h1+h2﹣h3=h.26.解:(1)当CD2=AC•DB时,△ACP∽△PDB,∵△PCD是等边三角形,∴∠PCD=∠PDC=60°,∴∠ACP=∠PDB=120°,8若CD2=AC•DB,由PC=PD=CD可得:PC•PD=AC•DB,即=,则根据相似三角形的判定定理得△ACP∽△PDB(2)当△ACP∽△PDB时,∠APC=∠PBD∵∠PDB=120°∴∠DPB+∠DBP=60°∴∠APC+∠BPD=60°∴∠APB=∠CPD+∠APC+∠BPD=120°即可得∠APB的度数为120°.27.证明:(1)∵△ACD和△BCE是等边三角形,∴AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,∵∠DCA=∠ECB=60°,∴∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,在△ACE与△DCB中,∵,∴△ACE≌△DCB,∴AE=BD;(2)∵由(1)得,△ACE≌△DCB,∴∠CAM=∠CDN,∵∠ACD=∠ECB=60°,而A、C、B三点共线,∴∠DCN=60°,在△ACM与△DCN中,∵,∴△ACM≌△DCN,∴MC=NC,∵∠MCN=60°,∴△MCN为等边三角形,∴∠N
本文标题:《等边三角形》练习题(附答案)
链接地址:https://www.777doc.com/doc-4245583 .html