您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 3.3.2函数的极值与导数课件
3.3.2函数的极值与导数aby=f(x)xoyy=f(x)xoyabf'(x)0f'(x)0复习:函数单调性与导数关系如果在某个区间内恒有,则为常数.0)(xf)(xf设函数y=f(x)在某个区间内可导,f(x)增函数f(x)减函数巩固:定义域R,f′(x)=x2-x=x(x-1)令x(x-1)0,得x0或x1,则f(x)单增区间(-∞,0),(1,+∞)令x(x-1)0,得0x1,f(x)单减区(0,1).注意:求单调区间:1:首先注意定义域,2:其次区间不能用(U)连接(第一步)解:(第二步)(第三步)单调区间27x21-x31f(x)23yxOabyf(x)x1f(x1)x2f(x2)x3f(x3)x4f(x4)在x1、x3处函数值f(x1)、f(x3)与x1、x3左右近旁各点处的函数值相比,有什么特点?f(x2)、f(x4)比x2、x4左右近旁各点处的函数值相比呢?观察图像:函数的极值定义设函数f(x)在点x0附近有定义,•如果对X0附近的所有点,都有f(x)f(x0),则f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);•如果对X0附近的所有点,都有f(x)f(x0),则f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0);oxyoxy0x0x◆函数的极大值与极小值统称为极值.(极值即峰谷处的值)使函数取得极值的点x0称为极值点•1.理解极值概念时需注意的几点•(1)函数的极值是一个局部性的概念,是仅对某一点的左右两侧附近的点而言的.•(2)极值点是函数定义域内的点,而函数定义域的端点绝不是函数的极值点.•(3)若f(x)在[a,b]内有极值,那么f(x)在[a,b]内绝不是单调函数,即在定义域区间上的单调函数没有极值.总结•(4)极大值与极小值没有必然的大小关系.一个函数在其定义域内可以有许多个极小值和极大值,在某一点的极小值可能大于另一点的极大值.(如图(1))(4)导数不存在的点,也有可能是函数的极值点,如图中,此点处导数不存在,但其函数值为函数的x4极小值。练习:下图是导函数的图象,试找出函数的极值点,并指出哪些是极大值点,哪些是极小值点.)(xfy)(xfyabxyx1Ox2x3x4x5x6)(xfyyxO探究:极值点处导数值(即切线斜率)有何特点?结论:极值点处,如果有切线,切线水平的.即:f(x)=0abyf(x)x1x2x3f(x1)=0f(x2)=0f(x3)=0思考;若f(x0)=0,则x0是否为极值点?xyO分析yx3是极值点吗?)(处,在,得由0,00'03)(',)(23xfxxxfxxf进一步探究:极值点两侧函数图像单调性有何特点?极大值极小值即:极值点两侧单调性互异f(x)0yxOx1abyf(x)极大值点两侧极小值点两侧f(x)0f(x)0f(x)0探究:极值点两侧导数正负符号有何规律?x2xXx2x2Xx2f(x)f(x)xXx1x1Xx1f(x)f(x)增f(x)0f(x)=0f(x)0极大值减f(x)0f(x)=0增减极小值f(x)0(2)只有f(x0)=0且x0两侧单调性不同,x0才是极值点.(3)求极值点,可以先求f(x0)=0的点,再列表判断单调性结论:极值点处,f(x)=0注(1)f(x0)=0x0是可导函数f(x)的极值点f/(x0)=0是可导函数取得极值的必要不充分条件。因为所以例1求函数的极值.4431)(3xxxf解:,4431)(3xxxf.4)(2xxf令解得或,0)(xf,2x.2x当,即,或;当,即.0)(xf0)(xf2x2x22x当x变化时,f(x)的变化情况如下表:x(–∞,–2)–2(–2,2)2(2,+∞)00f(x)–)(xf++单调递增单调递减单调递增3/283/4所以,当x=–2时,f(x)有极大值28/3;当x=2时,f(x)有极小值–4/3.小结求函数极值(极大值,极小值)的一般步骤:(1)确定函数的定义域(2)求方程f’(x)=0的根(3)用方程f’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格(4)由f’(x)在方程f’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况若f’(x0)左正右负,则f(x0)为极大值;若f’(x0)左负右正,则f(x0)为极小值求导—求极点—列表—求极值+-x0-+x0求下列函数的极值:;27)()2(;26)()1(32xxxfxxxf.3)()4(;126)()3(33xxxfxxxf解:,112)()1(xxf令解得列表:,0)(xf.121xx0f(x)()fx+单调递增单调递减–)121,(),121(1212449所以,当时,f(x)有极小值121x.2449)121(f变式求下列函数的极值:;27)()2(;26)()1(32xxxfxxxf.3)()4(;126)()3(33xxxfxxxf解:,0273)()2(2xxf令解得列表:.3,321xxx(–∞,–3)–3(–3,3)3(3,+∞)00f(x)–()fx++单调递增单调递减单调递增5454所以,当x=–3时,f(x)有极大值54;当x=3时,f(x)有极小值–54.变式求下列函数的极值:;27)()2(;26)()1(32xxxfxxxf.3)()4(;126)()3(33xxxfxxxf解:,0312)()3(2xxf令解得.2,221xx所以,当x=–2时,f(x)有极小值–10;当x=2时,f(x)有极大值22.,033)()4(2xxf令解得.1,121xx所以,当x=–1时,f(x)有极小值–2;当x=1时,f(x)有极大值2.变式例2.求y=(x2-1)3+1的极值.解:y’=6x(x2-1)2=6x(x+1)2(x-1)2令y’=0解得x1=-1,x2=0,x3=1.当x变化时,y′,y的变化情况如下表:xx(-∞,-1)-1(-1,0)0(0,1)1(1,+∞)y’-0-0+0+y↘无极值↘极小值0↗无极值↗1-1fx=x2-13+1xOy∴当x=0时,y有极小值且y极小值=0在社会生活实践中,为了发挥最大的经济效益,常常遇到如何能使用料最省、产量最高,效益最大等问题,这些问题的解决常常可转化为求一个函数的最大值和最小值问题函数在什么条件下一定有最大、最小值?他们与函数极值关系如何?极值是一个局部概念,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小。xoyax1by=f(x)x2x3x4x5x6如何求出函数在[a,b]上的最值?一般的如果在区间,[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值。(2)将y=f(x)的各极值与f(a)、f(b)(端点处)比较,其中最大的一个为最大值,最小的一个最小值.求f(x)在闭区间[a,b]上的最值的步骤:(1)求f(x)在区间(a,b)内极值(极大值或极小值);新授课注意:1.在定义域内,最值唯一;极值不唯一2.最大值一定比最小值大.例3.求函数y=x4-2x2+5在区间[-2,2]上的最大值与最小值解:先求导数,得y’=4x3-4x,令y’=0即4x3-4x=0,解得x1=-1,x2=0,x3=1.导数y’的正负以及f(-2),f(2)如下表:x-2(-2,-1)-1(-1,0)0(0,1)1(1,2)2y’-0+0-0+y13↘4↗5↘4↗13从上表知:当x=±2时,函数有最大值13,当x=±1时,函数有最小值41yxxxX-1-1(-1,0)(0,1)1X1+0--0+'()fx()fx所以,当x=-1是,函数的极大值是-2,当x=1时,函数的极小值是21,0xxx解:f(x)=所以导函数的正负是交替出现的吗?不是22211'()1xfxxx,'()01fxx时,x当变化时,f'(x),f(x)变化如下表极大值极小值下图是导函数的图象,在标记的点中,在哪一点处(1)导函数有极大值?(2)导函数有极小值?(3)函数有极大值?(4)函数有极小值?)(xfy)(xfy)(xfy)(xfy)(xfy2xx1xx4xx或3xx5xx2.(2006年天津卷)函数的定义域为开区间()fx导函数在内的图像如图所示,则函数在开区间内有()个极小值点。()fx(,)ab(,)ab(,)ab()fxA课外练习:1.函数f(x)=x3+3ax2+3(a+2)x+3既有极大值,又有极小值,则a的取值范围为.21aa或(A)1(B)2(C)3(D)4abxy)(xfy?Oabxy)(xfy?O•例3已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1,•(1)试求常数a、b、c的值;•(2)试判断x=±1时函数取得极小值还是极大值,并说明理由.•[解析](1)由f′(-1)=f′(1)=0,得3a+2b+c=0,3a-2b+c=0.•又f(1)=-1,∴a+b+c=-1.∴a=12,b=0,c=-32.(2)f(x)=12x3-32x,∴f′(x)=32x2-32=32(x-1)(x+1).当x-1或x1时,f′(x)0;当-1x1时,f′(x)0,∴函数f(x)在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上为减函数.∴当x=-1时,函数取得极大值f(-1)=1;当x=1时,函数取得极小值f(1)=-1.•[点评]若函数f(x)在x0处取得极值,则一定有f′(x0)=0,因此我们可根据极值得到一个方程,来解决参数.变式:设a0,(1)证明f(x)=ax+b1+x2取得极大值和极小值的点各有1个;(2)当极大值为1,极小值为-1时,求a和b的值.[解析](1)证明:f′(x)=a(1+x2)-2x(ax+b)(1+x2)2=-ax2-2bx+a(1+x2)2,令f′(x)=0,即ax2+2bx-a=0.①∵Δ=4b2+4a20,∴方程①有两个不相等的实根,记为x1、x2.不妨设x1x2,则有f′(x)=-ax2-2bx+a(1+x2)2=0,即-a(x-x1)(x-x2)=0.f′(x)、f(x)的变化情况如下表:由上表可见,f(x)取得极大值和极小值的点各有1个.(2)解:由(1)可知f(x1)=ax1+b1+x21=-1,f(x2)=ax2+b1+x22=1⇒-x21-1=ax1+b且1+x22=ax2+b,两式相加,得x22-x21=a(x1+x2)+2b.又x1+x2=-2ba,代入上式,得x22-x21=a-2ba+2b=0,∴x22-x21=0,即(x2-x1)(x2+x1)=0.•而x1x2,∴x1+x2=0.∴b=0.•代入①式,得a(x2-1)=0.•∵a0,∴x=±1.再代入f(x1)或f(x2),得a=2.•∴a=2,b=0.注意:函数极值是在某一点附近的小区间内定义的,是局部性质。因此一个函数在其整个定义区间上可能有多个极大值或极小值,并对同一个函数来说,在某一点的极大值也可能小于另一点的极小值。思考1.判断下面4个命题,其中是真命题序号为。①f(x0)=0,则f(x0)必为极值;②f(x)=在x=0处取极大值0,③函数的极小值一定小于极大值④函数的极小值(或极大值)不会多于一个。⑤函数的极值即为最值3x1)6()(23xaaxxxf有极大值和极小值,求a范围?思考2解析:f(x)有极大值和极小值f’(x)=0有2实根,0已知函数解得a6或a3练习1:求在时极值。44xx31y3),0(x练习2:若f(x)=ax3+bx2-x在x=
本文标题:3.3.2函数的极值与导数课件
链接地址:https://www.777doc.com/doc-4245744 .html