您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 承德中密砂邓肯-张模型参数计算(高等土力学作业)
高等土力学作业2014年4月HomeworkofAdvancedSoilMechanicsApr.2014承德中密砂邓肯-张模型参数计算根据承德中密砂在三种围压下的三轴试验结果,计算Duncan双曲线E、和E、B模型的参数。实验结果如下表所示。表1承德中密砂常规三轴试验结果围压MPa1003围压MPa3003围压MPa5003应力差(31)轴向变形1体应变v应力差(31)轴向变形1体应变v应力差(31)轴向变形1体应变v100kPa100kPa100kPa0.5080.002250.000740.9090.001250.000750.7560.000250.000571.0020.004490.00132.2860.003500.001512.4540.002500.001141.4630.006740.001763.5330.005750.002364.5870.004760.001991.8490.008980.002234.3410.008000.003026.3490.007010.002752.1490.011230.002235.2030.010250.003297.6890.009260.003032.3310.013480.002145.7810.012510.003298.7510.011510.003412.4770.015720.001766.2020.014760.003299.5730.013760.003512.5870.017970.001586.5290.017010.0032910.2240.016020.00362.6650.020210.001116.7890.019260.0030210.7590.018270.003602.7300.022460.000567.0650.021510.0028311.1970.020520.003412.7770.024710.000097.2330.023760.0023611.5510.022770.003132.8120.026950.000037.3900.026010.0018911.8370.025020.002942.8450.03032-0.000127.5150.029390.0016012.1640.028400.002462.8780.03369-0.001957.7140.032760.0009412.4390.031780.001992.8890.03706-0.002887.8460.036140.0002812.6520.035160.001522.8940.04043-0.003817.9390.03952-0.0004712.8080.038540.001042.8890.04492-0.004748.0610.04402-0.0012312.9530.043040.000092.8790.04941-0.005678.0430.04852-0.0020713.0690.04754-0.006602.8690.05390-0.006508.0580.05302-0.0029213.1480.05205-0.001712.8530.05839-0.007528.0470.05753-0.0037713.2100.05655-0.002462.8360.06289-0.008278.0260.06203-0.0045213.2390.06106-0.003222.8090.06738-0.008917.9920.06653-0.0053713.2340.06556-0.00408------7.9320.07216-0.0061313.2110.07190-0.00423------7.8590.07778-0.0070713.1170.07682-0.005691、E模型1.1切线变形模量Et的参数求解将常规三轴试验结果按照311/与1的关系进行整理,则二者接近线性关系,满足1311ba(1)其中,a、b分别为直线的截距和斜率。2014年4月承德中密砂邓肯-张模型参数计算2(a)σ3=100MPa(b)σ3=300MPa(c)σ3=500MPa图1承德中密砂)/(311与1试验关系图图1给出了)/(311与1试验关系图,将图的三组数据进行线性拟合得到三组a、b值,见表2所示,其中,a为直线纵截距,代表试验中起始变形模量Ei的倒数;b为直线斜率,代表双曲线渐进线所对应的极限偏差应力ult)(31的倒数。即:aEi1(2)bult1)(31(3)表2不同围压下a、b值σ3(MPa)ab1000.00001862400.00311033000.00000794150.00111295000.00000519840.0006697根据(4)式求解破坏比fR:ultffR)()(3131(4)其中,f)(31代表%151对应的土体强度,对于有峰值点的情况,取峰)()(3131f,可通过表1得到;ult)(31代表双曲线渐进线所对应的极限偏差应力,其值可通过(3)式得到。表3给出了三组试验下的fR值,分别为0.9001219、0.8970795、0.8865627,取其平均值为:895.0fR。表3fR值求解3f)(31ult)(31fRMPaMPaMPa100289.4321.51202220.9001219300806.1898.58255790.89707955001323.91493.2953280.8865627根据摩尔-库伦强度准则,有:sin1sin2cos2)(331cf(5)将3组数据代入(5)式可得:sin1sin200cos2289.4c(6a)sin1sin600cos21.806c(6b)sin1sin1000cos29.1323c(6c)由于(6)式中仅有2个未知数c、,本文采用分别选取两组方程求解后取平均值得到c、值,如表4所示,最终计算结果为kPac03.8,33.34。表4c、值求解方程组c(kPa)(°)(6a)&(6b)8.20120946934.3087521(6a)&(6c)8.12545679334.3269027(6b)&(6c)7.75944404334.3450354y=0.0031103036x+0.000018624000.000050.00010.000150.00020.000250.000300.020.040.060.08ε1/(σ1-σ3)ε1σ3=100MPay=0.0011128638x+0.000007941500.000020.000040.000060.000080.00010.0001200.020.040.060.080.1ε1/(σ1-σ3)ε1σ3=300MPay=0.0006696599x+0.000005198400.000010.000020.000030.000040.000050.000060.0000700.020.040.060.080.1ε1/(σ1-σ3)ε1σ3=500MPa2014年4月高等土力学第1次作业3根据)/lg(aipE与)/lg(3ap的线性关系可求解n、K:KpnpEaailg)lg()lg(3(7)其中,ap为大气压(kPapa4.101),量纲与3相同;n、K为试验参数,分别代表)/lg(aipE与)/lg(3ap直线的截距与斜率,iE可由(2)式求得。表5给出了从试验数据中整理得到的三组)/lg(aipE与)/lg(3ap值,将这三组数据进行线性拟合得到参数n、K,如图2所示,其值为n=0.790、K=102.727≈533.35。表5试验常数n、K值求解3)/lg(aipE)/lg(3ap1002.723889082-0.0060379553003.0940595050.47108335003.2780923510.692932049图2承德中密砂)/lg(aipE与)/lg(3ap试验关系图1.2切线泊松比i的参数求解将常规三轴压缩试验中13/与3之间的关系近似为线性关系,)(/313Df(8)从而可以确定截距f和斜率D。其中,1为常规三轴压缩试验中的轴向应变;3为常规三轴压缩试验中的侧向应变,)(5.013v;f代表初始泊松比;D代表31~关系渐近线的倒数。(a)σ3=100MPa(b)σ3=300MPa(c)σ3=500MPa图3承德中密砂13/与3试验关系图表6不同围压下参数f、D值σ3(MPa)fD1000.3884872945.9615290233000.3507097495.9171669555000.3397778016.00054182y=0.7901734992x+2.72701262942.42.62.833.23.4-0.200.20.40.60.8lg(Ei/pa)lg(σ3/pa)y=5.9615290232x+0.38848729410.20.30.40.50.60.700.010.020.030.040.05-ε3/ε1-ɛ3σ3=100MPay=5.9171669548x+0.35070974920.20.30.40.50.60.700.010.020.030.040.05-ε3/ε1-ɛ3σ3=300MPay=6.0005418196x+0.33977780060.20.30.40.50.60.700.010.020.030.040.05-ε3/ε1-ɛ3σ3=500MPa2014年4月承德中密砂邓肯-张模型参数计算4图3给出了13/与3的关系拟合直线,于是可以得到不同围压下参数D的值,如表6所示。取三者平均值,于是有D=5.960。表7三种围压下的f、)/lg(3ap值σ3(MPa)f)/lg(3ap1000.3884872940.0060379553000.350709749-0.4710833005000.339777801-0.692932049试验表明土的初始泊松比i与试验的围压3有关,将它们画在)/lg(~3apf单对数坐标中,其中,三种围压下的f、)/lg(3ap值见表7所示。图4给出了三种围压下的f、)/lg(3ap关系图,可将这三点拟合成一条直线,那么)/lg(3aipFGf(9)其中,G、F为试验参数,其值分别取为图4中拟合直线的截距和斜率。由图可知,G=0.387,F=0.071。\图4承德中密砂f与)/lg(3ap试验关系图于是,E、模型中的8个参数均已得到,分别为:Rf=0.895,kPac03.8,33.34,n=0.790、K=533.35,D=5.960,G=0.387,F=0.071。2BE、模型E、B模型中的前5个参数(Rf,c,,n,K)与E、模型中参数相同,该模型引入体变模量B代替切线泊松比t,通过三轴试验并用下式确定B%70%7031)(3)(vB(10)其中,%7031)(与%70)(v为)(31达到70%f)(31时的偏差应力和体应变的试验值。对于每一组三轴试验,B即为一个常数,且B与3满足:maabppKB3(11)其中,Kb和m是材料参数。可以看出)/lg(apB与)/lg(3ap呈线性关系,表8给出了三组试验的)/lg(apB与)/lg(3ap值,将这三组数据绘制在双对数坐标中,如图5所示。那么,lgKb和m分别代表)/lg(apB与)/lg(3ap拟合直线的截距与斜率。由图可知,Kb=102.359≈228.48,m=0.127。表8三种围压下的)/lg(apB、)/lg(3ap值σ
本文标题:承德中密砂邓肯-张模型参数计算(高等土力学作业)
链接地址:https://www.777doc.com/doc-4250684 .html