您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 商业计划书 > 不定积分换元法例题1
不定积分换元法例题2009-12-181__________________________________________________________________________________________【第一换元法例题】1、9999(57)(57)(5711(57)(57)55)(57)dxdxdxdxxxxx110091(57)(57)(57)10111(57)5550dCxxxxC【注】1(57)'5,(57)5,(57)5xdxdxdxdx2、1lnlnlnlndxdxxxdxxxx221(l1lnln(ln)2n)2xxxdCxC【注】111(ln)',(ln),(ln)xdxdxdxdxxxx3(1)sintancoscosiscoscosncoscosxdxdxxdxdxxdxxxxxcosln|cos|cln|cos|osxxdCxCx【注】(cos)'sin,(cos)sin,sin(cos)xxdxxdxxdxdx3(2)coscoscotsinsinsinsinxdxxxdxdxdxxxxsinln|siln|sin|n|sinxxdCxCx【注】(sin)'cos,(sin)cos,cos(sin)xxdxxdxxdxdx4(1)1()11ddxaxaxadxxaxln|1(|)ln||dCaxaxaxaxC【注】()'1,(),()axdaxdxdxdax4(2)1()11ddxxaxxxdaaxaln|1(|)ln||dCxaxaxaxaC【注】()'1,(),()xadxadxdxdxa4(3)22221111111212xaaxadxdxxaxadxdxaaaxdxx11ln||ln||ln22xaxaxaCCaaxa不定积分换元法例题2009-12-1825(1)2sec()sectansecsectansectansecsectanxxxxxdxxxxxdxdxxxtansectansecsec()()ln|sectan|setanctandxxxxxxdxxCxx5(2)2221cosseccosccossinoscos1sinxxdxdxdxxxxdxdxxx2sinsi1111sin111sinlnln1nsin2112sin121ssinsinindxxxxxxdCCxxx6(1)2csc()csccotcsccsccotcsccotcsccsccotxxxxxdxxxxxdxdxxx()()ln|csccot|cscccotcsccsccotcscoottcddxxxxxxxxCxx6(2)2csc()csccotcsccsccotcsccotcsccsccotxxxxxdxxxxxdxdxxx()(cotcsccscco)ln|csctcsccocot|ctsccotdxxxxdxxxxxCx7(1)221arcsin11dxdxxCxx7(2)22222221arcsin111ddxxdxCaaxddxaxaxxaxxxaaaa8(1)221arctan11dxdxxCxx8(2)222222221111arctan111ddxxdxCaxaxaaaxxxddxxaxaaaaaa,(0a)9(1)352525ssincossincossinicsocnosxdxxdxxxxxxdx862575coscos(1cos)coscos(coscos)cos86xxxxdxxxdxC9(2)353434csincossincossincosossinxxxdxxxxdxdxx468322357sinsinsinsin(1sin)sin(sin2sinsin)sin438xxxxxdxxxxdxC不定积分换元法例题2009-12-18310(1)1ln111llnlnlnllnnnlndxdxCxxxxdxdxxxx10(2)222211111lnlnlnlnlnnlnldxdCxxxxdxxxxdxx11(1)242424222222()arctan(21)222)121122(xdxdxCxxxxxxxxdxxdx11(2)2242422422121()2521112252524()xdxdxxdxdxxxxxxxx2222222121(1)111arctan()8442111122xddxxCxx12、sinsins11222insinxdxxxdxdxxdxxxx2sin2cos2cosdCxCxxx13、222211222122xxxxedxedxdexCe14、43333cosinsincossinsinssini4sinsnxxxdxxxdCdxxxxdx15、100(25)xdx10010010011(25)(25)2(25)(25)(25)2dxdxxxxdx1001100111(25)(25)(25)101111(25)22202xxxdCxC16、2222222111sinsins2insincos22xxxxxdxxxdxdxxdC17、lnlnln(1ln)1ln1ln1ln1ln1ln1lndxdxxxxdxdxxxxxxxx不定积分换元法例题2009-12-184312211lnlnln1ln11ln(1ln)(1ln)1ln2(1ln)2(1ln)3xdxdxxxdxdxxxxC18、arctanarctanarctanarcarct2tan2anarcta11arct1nanxxxxxedxeeedeCxdxdxxx19、222222(11111111)22xdxxxxxdxxddxx22211(1)21dxxxC20、333sisin11coscoscosncosxxdxddxxxxx3221coscos2cosxCxdx21、111()ln(22222)2xxxxxxxxxedxdeedxdeCeeeee22、23222lnlnlnl1lnlnlnn3xxdxxxxxdCxdxdxx23、22222(1)1arcsin2122(1)2(1)((2)(11))dxdxdxxCxxxxdxx24、222221()21777()1121()()()()2224224dxdxxxxxxdxdx221()22212arc1tanarctan7777()21722()2dxxCCxx25、计算2222sincossincosxxdxaxbx,22ab不定积分换元法例题2009-12-185【分析】因为:22222222(sincos)'2sincos2cos(sin)2()sincosaxbxaxxbxxabxx所以:222222(sincos)2()sincosdaxbxabxxdx2222221sincos(sincos)2()xxdxdaxbxab【解答】2222222222222222221sincossincsincossincos(sios2sincosncos)xxxxdxdaaxbxaxbxxbxdxabaxbx2222222222222222sincos2si1()1sincosncosdaaxbxaxbxxbxCabab【不定积分的第二类换元法】已知()()ftdtFtC求()(())()(())'()gxdxgtdtgttdt【做变换,令()xt,再求微分】()()ftdtFtC【求积分】1(())FxC【变量还原,1()tx】__________________________________________________________________________________________【第二换元法例题】1、22sinsinsin2si2nxtxtxttdxtdtttdttdtx令2cos2costxtCxC变量还原2(1)221111221112111xtxtdttdtdxdtdtttttxt令不定积分换元法例题2009-12-1862ln|1|2ln|1|txttCxxC变量还原2(2)22(1)(11)2(1)11112211xtxtdtdxdtdtttttdtttx令1+12ln||21ln|1|txttCxxC变量还原3、334344332343321(1)41111(1)(1)(1)4(1)3xtxtxdxtttxtdtttdt令746312()1274ttttdtC334443714(1)(1)1274txxxC变量还原4、2222211112(1)(1)1(1)2xtxtdttddxdttttttxxt令2arctan2arctantxtCxC变量还原5、ln111111111(1)11lnxxetxtdxdtdtetttttttttdd令ln||ln|1|lnln11xxxtetettCCCte变量还原6、663223236522111661(1)(61)11(1)xtxtdxtdtdttttttdtttxxdt令6666(arctan)6(arctan)txttCxxC变量还原【注】被积函数中出现了两个根式,mnxx时,可令kxt,其中k为,mn的最小公倍数。7(1)333222233ln|1|1212xtxtdxttdtttCtx
本文标题:不定积分换元法例题1
链接地址:https://www.777doc.com/doc-4258643 .html