您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > XXXX年福州市高中毕业班质量检查
第1页2012年福州市高中毕业班质量检查数学(理科)试卷(完卷时间:120分钟;满分:150分)第Ⅰ卷(选择题共50分)一、选择题【本大题共10小题,每小题5分,共50分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.)1.抛物线y2=4x的准线方程为A.x=-1B.x=1C.y=-1D.y=12.命题“x∈R,ex0”的否定是A.x∈R,ex≤0B.$x∈R,ex≤0C.$x∈R,ex0D.x∈R,ex03.如果执行如图所示的框图,输入如下四个复数:①z=12i;②z=-14+34i;③z=22+12i;④z=12-32i.那么输出的复数是A.①B.②C.③D.④4.用m、n表示两条不同的直线,仪表示平面,则下列命题正确的是A.若m∥n,nÌα,则m∥αB.若m∥α,nÌα,则m∥nC.若m⊥n,nÌα,则m⊥αD.若m⊥α,nÌα,则m⊥n5.设随机变量ξ服从正态分布N(1,σ2),则函数f(x)=x2+2x+ξ不存在零点的概率为A.14B.13C.12D.236.在△ABC中.点O在线段BC的延长线上。且与点C不重合,若AO=xAB+(1-x)AC,则实数x的取值范围是A.(-∞,0)B.(0,+∞)C.(-1,0)D.(0,1)7.如图所示2×2方格,在每一个方格中填人一个数字,数字可以是l、2、3、4中的任何一个,允许重复.若填入A方格的数字大于B方格的数字,则不同的填法共有A.192种B.128种C.96种D.12种8.函数f(x)=2cos(ωx+φ)(ω0,0φπ)为奇函数,该函数的部分图象如图所示,点A、B分别为该部分图象的最高ABCD第2页点与最低点,且这两点间的距离为42,则函数f(x)图象的一条对称轴的方程为A.x=4pB.x=2pC.x=4D.x=29.过双曲线2222xyab-=1(a0,b0)的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于点P,若T为线段FP的中点,则该双曲线的渐近线方程为A.x±y=0B.2x±y=0C.4x±y=0D.x±2y=010.若将有理数集Q分成两个非空的子集M与N,且满足M∪N=Q,M∩N=Æ,M中的每一个元素都小于N中的每一个元素,则称(M,N)为有理数集的一个分割.试判断,对于有理数集的任一分割(M,N),下列选项中,不可能...成立的是A.M没有最大元素,N有一个最小元素B.M没有最大元素,N也没有最小元素C.M有一个最大元素,N有一个最小元素D.M有一个最大元素,N没有最小元素第Ⅱ卷(非选择题共100分)二、填空题(本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置上.)11.sin47°cosl3°+sinl3°sin43°的值等于__________l2.函数f(x)=x3+ax(x∈R)在x=l处有极值,则曲线y=f(x)在原点处的切线方程是_____13.在约束条件1,2,10,xyxyì£ïï£íï+-?ïî,下,目标函数z=ax+by(a0,b0)的最大值为1,则ab的最大值等于_______14.设函数f(x)=1(1)2x+-(x∈Z).给出以下三个判断:①f(x)为偶函数;②f(x)为周期函数;③f(x+1)+f(x)=1.其中正确判断的序号是________(填写所有正确判断的序号).15.一个平面图由若干顶点与边组成,各顶点用一串从1开始的连续自然数进行编号,记各边的编号为它的两个端点的编号差的绝对值,若各条边的编号正好也是一串从1开始的连续自然数,则称这样的图形为“优美图”.已知图15是“优美图”,则点A、B与边a所对应的三个数分别为___________三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分13分)在数列{an}中,a1=2,点(an,an+1)(n∈N*)在直线y=2x上.(Ⅰ)求数列{an}的通项公式;第3页(Ⅱ)若bn=log2an,求数列11nnbb+禳镲睚×镲铪的前n项和Tn.l7.(本小题满分13分)假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为0.5,记此时教室里敞开的窗户个数为X.(Ⅰ)求X的分布列;(Ⅱ)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为y,求y的数学期望.18.(本小题满分13分)如图,椭圆22221xyab+=(ab0)的上、下顶点分别为A、B,已知点B在直线l:y=-1上,且椭圆的离心率e=32.(Ⅰ)求椭圆的标准方程;(Ⅱ)设P是椭圆上异于A、B的任意一点,PQ⊥y轴,Q为垂足,M为线段PQ中点,直线AM交直线l于点C,N为线段BC的中点,求证:OM⊥MN.19.(本小题满分l4分)如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O.沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.(Ⅰ)求证:BD⊥平面POA;(Ⅱ)当PB取得最小值时,请解答以下问题:(i)求四棱锥P-BDEF的体积;(ii)若点Q满足AQ=λQP(λ0),试探究:直线OQ与平面PBD所成角的大小是否一定大于4p?并说明理由.第19题图第4页20.(本小题满分13分)如图①,一条宽为lkm的两平行河岸有村庄A和供电站C,村庄B与A、C的直线距离都是2km,BC与河岸垂直,垂足为D.现要修建电缆,从供电站C向村庄A、B供电.修建地下电缆、水下电缆的费用分别是2万元/km、4万元/km.(Ⅰ)已知村庄A与B原来铺设有旧电缆仰,需要改造,旧电缆的改造费用是0.5万元/km.现决定利用旧电缆修建供电线路,并要求水下电缆长度最短,试求该方案总施工费用的最小值.(Ⅱ)如图②,点E在线段AD上,且铺设电缆的线路为CE、EA、EB.若∠DCE=θ(0≤θ≤3p),试用θ表示出总施工费用y(万元)的解析式,并求y的最小值.第20题图21.本题有(1)、(2)、(3)三个选做题,每题7分,请考生任选2题作答,满分l4分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填人括号中.(1)(本小题满分7分)选修4—2:矩阵与变换利用矩阵解二元一次方程组32,423xyxyì+=ïí+=ïî.(2)(本小题满分7分)选修4—4:坐标系与参数方程在平面直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(cosθ+sinθ)=1.圆的参数方程为1cos,1sinxryrqqì=+ïí=+ïî(θ为参数,r0),若直线l与圆C相切,求r的值.(3)(本小题满分7分)选修4—5:不等式选讲已知a2+b2+c2=1(a,b,c∈R),求a+b+c的最大值.第5页2012年福州市高中毕业班质量检查数学(理科)试卷参考答案及评分标准一、选择题(本大题共10小题,每小题5分,共50分.)1.A2.B3.D4.D5.C6.A7.C8.D9.B10.C二、填空题(本大题共5小题,每小题4分,共20分.)11.3212.30xy13.1814.①②③15.3、6、3三、解答题(本大题共6小题,共80分.)16.(本小题满分13分)解:(Ⅰ)由已知得12nnaa,所以12nnaa又12a,所以数列na是首项为2,公比为2的等比数列,·····················································3分所以1*122()nnnaanN.························································································5分(Ⅱ)由(Ⅰ)知,2nna,所以2log,nnban···············································7分所以11111(1)1nnbbnnnn,················································································10分所以111111111223341nTnn1111nnn.·····························································································13分17.(本小题满分13分)解:(Ⅰ)∵X的所有可能取值为0,1,2,3,4,(4,0.5)XB,··············1分∴40411(0)216PXC,41411(1)24PXC,42413(2)28PXC,43411(3)24PXC,44411(4)216PXC,····················································································6分X的分布列为X01234第6页p116143814116········································7分(Ⅱ)Y的所有可能取值为3,4,则···········································································8分1(3)(3)4PYPX,··························································································9分3(4)1(3)4PYPY,···················································································11分Y的期望值1315()34444EY.答:Y的期望值()EY等于154.··················································································13分18.(本小题满分13分)解:(Ⅰ)依题意,得1b.······················································································1分∵32cea,2221acb,∴24a.···························································3分∴椭圆的标准方程为2214xy.················································································4分(Ⅱ)(法一)证明:设00,Pxy,00x,则0(0,)Qy,且220014xy.∵M为线段PQ中点,∴00,2xMy.····································································5分又0,1A,∴直线AM的方程为002(1)1yyxx.000,1,xy令1y,得00,11xCy.············································
本文标题:XXXX年福州市高中毕业班质量检查
链接地址:https://www.777doc.com/doc-426728 .html