您好,欢迎访问三七文档
高斯(JohannCarlFriedrichGauss)(1777年4月30日-1855年2月23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。高斯被认为是最重要的数学家,并拥有数学王子的美誉。1792年,15岁的高斯进入布伦瑞克(Braunschweig)学院。在那里,高斯开始对高等数学作研究。独立发现了二项式定理的一般形式、数论上的“二次互反律”(LawofQuadraticReciprocity)、质数分布定理(primenumertheorem)及算术几何平均(arithmetic-geometricmean)。1795年高斯进入哥廷根大学。1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。1855年2月23日清晨,高斯于睡梦中去世。生平事迹童年时期高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。高斯3岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。当高斯9岁时候,高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和为(1+100,2+99,3+98……),同时得到结果:5050。但是据更为精细的数学史书记载,高斯所解的并不止1加到100那么简单,而是81297+81495+......+100899(公差198,项数100)的一个等差数列。青少年时期当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学。他导出了二项式定理的一般形式,将其成功地运用在无穷级数,并发展了数学分析的理论。高斯的老师Bruettne与他助手MartinBartels很早就认识到了高斯在数学上异乎寻常的天赋,同时HerzogCarlWilhelmFerdinandvonBraunschweig也对这个天才儿童留下了深刻印象。于是他们从高斯14岁起,便资助其学习与生活。这也使高斯能够在公元1792-1795年在Carolinum学院(今天Braunschweig学院的前身)学习。18岁时,高斯转入哥廷根大学学习。在他19岁时,第一个成功地用尺规构造出了规则的17角形。成年时期高斯于公元1805年10月5日与来自Braunschweig的JohannaElisabethRosinaOsthoff小姐(1780-1809)结婚。在公元1806年8月21日迎来了他生命中的第一个孩子约瑟。此后,他又有两个孩子。Wilhelmine(1809-1840)和Louis(1809-1810)。1807年高斯成为哥廷根大学的教授和当地天文台的台长。虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的RichardDedekind和黎曼,黎曼创立了黎曼几何学。19世纪40年代初期开始,高斯几乎完全退出了物理学的创新研究,只从事例行的天文观测,计算汉诺威测地工作中遗留下的问题,对老的研究课题、发表过的评论或报告作些修饰,解决一些小的数学问题.此后的出版物正反映了他的这种状态.他对E.E.库默尔(Kummer)新创立的理想论(1845)没有强烈的反应,对海王星的发现(1846)亦很漠然.C.G.雅可比(Jacobi)在参加纪念高斯获博士学位50周年大会后说,跟高斯谈数学问题时,他总是把话题叉开而谈些无聊的事.在40年代,高斯对格丁根大学的事务有了较多关注,担任过教授会的负责人;花了几年时间,将大学丧偶者基金会的高斯不仅是数学家,还是那个时代最伟大的物理学家和天文学家之一。在《算术研究》问世的同一年,即1801年的元旦,一位意大利天文学家在西西里岛观察到在白羊座(Aries)附近有光度八等的星移动,这颗现在被称作谷神星(Ceres)的小行星在天空出现了41天,扫过八度角之后,就在太阳的光芒下没了踪影。当时天文学家无法确定这颗新星是彗星还是行星,这个问题很快成了学术界关注的焦点,甚至成了哲学问题。黑格尔就曾写文章嘲讽天文学家说,不必那么热衷去找寻第八颗行星,他认为用他的逻辑方法可以证明太阳系的行星,不多不少正好是七颗。高斯也对这颗星着了迷,他利用天文学家提供的观测资料,不慌不忙地算出了它的轨迹。不管黑格尔有多么不高兴,几个月以后,这颗最早发现迄今仍是最大的小行星准时出现在高斯指定的位置上。自那以后,行星、大行星(海王星)接二连三地被发现了。在物理学方面高斯最引人注目的成就是在1833年和物理学家韦伯发明了有线电报,这使高斯的声望超出了学术圈而进入公众社会。除此以外,高斯在力学、测地学、水工学、电动学、磁学和光学等方面均有杰出的贡献。即使是数学方面,我们谈到的也只是他年轻时候在数论领域里所做的一小部分工作,在他漫长的一生中,他几乎在数学的每个领域都有开创性的工作。例如,在他发表了《曲面论上的一般研究》之后大约一个世纪,爱因斯坦评论说:“高斯对于近代物理学的发展,尤其是对于相对论的数学基础所作的贡献(指曲面论),其重要性是超越一切,无与伦比的。”根据Dunnington,高斯的信仰是基于寻求真理的。它相信“精神个性上的不朽,像是个人在死后的持久性,还有最后命令的东西,以及永恒的、正义的、无所不知和无所不能的上帝。”高斯也坚持宗教的宽容,他相信打扰其他正处在他们自己和平信念中的人是不对的。从一加到一百七岁时高斯进了St.Catherine小学。大约在十岁时,老师在算数课上出了一道难题:「把1到100的整数写下来,然后把它们加起来!」每当有考试时他们有如下的习惯:第一个做完的就把石板〔当时通行,写字用〕面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完后,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为101的数目,所以答案是50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起.1796年的一天,德国哥廷根大学,一个很有数学天赋的19岁青年吃完晚饭,开始做导师单独布置给他的每天例行的三道数学题。前两道题在两个小时内就顺利完成了。第三道题写在另一张小纸条上:要求只用圆规和一把没有刻度的直尺,画出一个正17边形。他感到非常吃力。时间一分一秒的过去了,第三道题竟毫无进展。这位青年绞尽脑汁,但他发现,自己学过的所有数学知识似乎对解开这道题都没有任何帮助。困难反而激起了他的斗志:我一定要把它做出来!他拿起圆规和直尺,他一边思索一边在纸上画着,尝试着用一些超常规的思路去寻求答案。当窗口露出曙光时,青年长舒了一口气,他终于完成了这道难题。见到导师时,青年有些内疚和自责。他对导师说:“您给我布置的第三道题,我竟然做了整整一个通宵,我辜负了您对我的栽培……”导师接过学生的作业一看,当即惊呆了。他用颤抖的声音对青年说:“这是你自己做出来的吗?”青年有些疑惑地看着导师,回答道:“是我做的。但是,我花了整整一个通宵。”导师请他坐下,取出圆规和直尺,在书桌上铺开纸,让他当着自己的面再做出一个正17边形。青年很快做出了一上正17边形。导师激动地对他说:“你知不知道?你解开了一桩有两千多年历史的数学悬案!阿基米德没有解决,牛顿也没有解决,你竟然一个晚上就解出来了。你是一个真正的天才!”原来,导师也一直想解开这道难题。那天,他是因为失误,才将写有这道题目的纸条交给了学生。每当这位青年回忆起这一幕时,总是说:“如果有人告诉我,这是一道有两千多年历史的数学难题,我可能永远也没有信心将它解出来。”这位青年就是数学王子高斯。卡尔·弗里德里希·高斯卡尔·弗里德里希·高斯(1777-1855年)是德国19世纪著名的数学家、物理学家。高斯不到20岁时,在许多学科上就已取得了不小的成就。对于高斯接二连三的成功,邻居的几个小伙子很不服气,决心要为难他一下。小伙子们聚到一起冥思苦想,终于想出了一道难题。他们用一根细棉线系上一块银币,然后再找来一个非常薄的玻璃瓶,把银币悬空垂放在瓶中,瓶口用瓶塞塞住,棉线的另一头也系在瓶塞上。准备好以后,他们小心翼翼地捧着瓶子,在大街上拦住高斯,用挑衅的口吻说道,“你一天到晚捧著书本,拿着放大镜东游西逛,一副蛮有学问的样子,你那么有本事,能不碰破瓶子,不去掉瓶塞,把瓶中的棉线弄断吗?”高斯对他们这种无聊的挑衅很生气,本不想理他们,可当他看了瓶子后,又觉得这道难题还的确有些意思,于是认真地想着解题的办法来。繁华的大街商店林立,人流如川。在小伙子为能难倒高斯而得意之时,大街上的围观者越来越多。大家兴趣甚浓,都在想着法子,但无济于事,除了摇头自嘲之外,只好把期冀的目光投向高斯。高斯呢,眉头紧皱,一声不吭。小伙子们更得意了,他们为自己高明的难题而叫绝。有人甚至刁难道:“怎么样,你智力有限吧,实在解不出,就把你得到的那么多荣誉证书拿到大街上当众烧掉,以后别再逞能了。”高斯的确气恼,但他仍克制住,不受围观者嘈杂吵嚷的影响而冷静思考。他无意地看了看明媚的阳光,又望了望那个瓶子,忽然高兴地叫道:“有办法了。”说着从口袋里拿出一面放大镜,对着瓶子里的棉线照着,一分钟、两分钟..人们好奇地睁大了眼,随着钱币“铛”的一声掉落瓶底,大家发现棉线被烧断了。高斯高声说道:“我是把太阳光聚焦,让这个热度很高的焦点穿过瓶子,照射在棉线上,使棉线烧断。太阳光帮了我的忙。”1799年:关于代数基本定理的博士论文1801年:代数论1809年:天体运动论1827:曲面的一般1843/44年:高等大地测量学理论(上)1846/47年:高等大地测量学理论(下)1850年,心脏病加重,行动受到限制.1851年7月1日有日蚀,高斯作了他最后一次天文观测.1851年,核准G.F.B.黎曼(Riemann)的博士论文,给予高度评价.1852年,改进傅科摆,解决一些小的数学问题.1853年,为黎曼选定为获讲师资格需作的答辩题目(几何基础).1854年1月,全面体检诊断高斯心脏已扩大,将不久于人世.但病情奇迹般地得到缓解.1854年6月,听了黎曼关于几何基础的答辩报告,出席格丁根到汉诺威间铁路的开通仪式.1854年8月,病情恶化,下肢水肿.1855年2月3日清晨,高斯在睡眠中故去.打了折扣的人生价值高斯是19世纪最伟大的数学家,曾赢得同代人广泛的尊重.早在1824年以前,他就已经独立地取得了非欧几何学的研究成果.但由于大数学家康德的欧几里德空间观念在当时占据着统治地位,人们都相信康德,认为他不可突破.而高斯发现的非欧几何学恰恰突破了这一空间概念,高斯害怕他的非欧几何学与传统空间概念相违背,引起不理解者的反对,因此一直没敢拿出来公开发布.1826年俄国数学家罗巴切夫斯基在喀山大学物理学会上宣布他创立了非欧几何学.由于他动摇了旧的传统空间观念,罗巴切夫斯基遭到了教廷的强烈反对.主教宣布他的学说是邪教,更有人用匿名信在杂志上嘲笑、谩骂侮辱罗巴切夫斯基,甚至说他是疯子。了解罗巴切夫斯基非欧几何学正确性的只有高斯,而且以他在
本文标题:数学王子高斯
链接地址:https://www.777doc.com/doc-4276201 .html