您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 基于临界比例度法的PID控制器参数整定
课程设计题目:基于临界比例度法的PID控制器参数整定学院计算机科学与信息工程专业年级13自动化2班学生姓名胡秋松学号20131332指导教师吴诗贤职称讲师日期2016-11-30第1页(共15页)目录摘要..................................................................................................................................................2一、设计任务...................................................................................................................................31、设计对象具体要求.............................................................................................................32、课程设计内容及要求.........................................................................................................3二、PID控制原理及PID参数整定概述........................................................................................41、PID控制原理......................................................................................................................42、PID参数整定概述..............................................................................................................5三、基于临界比例度法的PID控制器参数整定算法...................................................................71、临界比例度法的定义.........................................................................................................72、临界比例度法整定PID参数步骤.....................................................................................8四、利用Simulink建立仿真模型.................................................................................................91、确定临界比例度和临界振荡周期.....................................................................................92、系统仿真模型的建立.......................................................................................................103、Simulink系统仿真框图..................................................................................................123.1P控制.....................................................................................................................123.2PI控制....................................................................................................................123.3PID控制..................................................................................................................13五、总结.........................................................................................................................................14参考文献.........................................................................................................................................15第2页(共15页)摘要在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器的参数整定是PID控制系统设计的核心内容。参数整定的方法很多,如Ziegler-Nichols整定法、临界比例度法、衰减曲线法等。本次仿真设计采用临界比例度法。关键词:PID自动控制MATLAB/Simulink仿真第3页(共15页)一、设计任务1、设计对象具体要求已知如图所示系统其中,Gc(S)分别为P、PI、PID控制器。请采用临界比例度法计算P、PI、PID控制器参数,并绘制整定后系统的单位阶跃响应曲线。2、课程设计内容及要求2.1PID控制原理及PID参数整定概述。2.2基于临界比例度法的PID控制器参数整定算法(要求较详细)。2.3利用Simulink建立仿真模型(须有较为详细的建模过程说明)。2.4详细描述参数整定过程。2.5调试分析过程及结果描述。列出主要问题的出错现象、出错原因、解决方法及效果等;2.6总结。包括课程设计过程中的学习体会与收获等内容。第4页(共15页)二、PID控制原理及PID参数整定概述1、PID控制原理在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。(1)比例(P)控制比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-stateerror)。(2)积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(SystemwithSteady-stateError)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。(3)微分(D)控制在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。第5页(共15页)2、PID参数整定概述(1)采样周期的确定:香农(Shannon)采样定律:为不失真地复现信号的变化,采样频率至少应大于或等于连续信号最高频率分量的二倍。根据采样定律可以确定采样周期的上限值。实际采样周期的选择还要受到多方面因素的影响,不同的系统采样周期应根据具体情况来选择。采样周期的选择,通常按照过程特性与干扰大小适当来选取采样周期:即对于响应快、(如流量、压力)波动大、易受干扰的过程,应选取较短的采样周期;反之,当过程响应慢(如温度、成份)、滞后大时,可选取较长的采样周期。采样周期的选取应与PID参数的整定进行综合考虑,采样周期应远小于过程的扰动信号的周期,在执行器的响应速度比较慢时,过小的采样周期将失去意义,因此可适当选大一点;在计算机运算速度允许的条件下,采样周期短,则控制品质好;当过程的纯滞后时间较长时,一般选取采样周期为纯滞后时间的1/4~1/8。(2)整定概述:人们通过对PID控制理论的认识和长期人工操作经验的总结,可知PID参数应依据以下几点来适应系统的动态过程。1、在偏差比较大时,为使尽快消除偏差,提高响应速度,同时为了避免系统响应出现超调,Kp取大值,Ki取零;在偏差比较小时,为继续减小偏差,并防止超调过大、产生振荡、稳定性变坏,Kp值要减小,Ki取小值;在偏差很小时,为消除静差,克服超调,使系统尽快稳定,Kp值继续减小,Ki值不变或稍取大。2、当偏差与偏差变化率同号时,被控量是朝偏离既定值方向变化。因此,当被控量接近定值时,反号的比列作用阻碍积分作用,避免积分超调及随之而来的振荡,有利于控制;而当被控量远未接近各定值并向定值变化时,则由于这两项反向,将会减慢控制过程。在偏差比较大时,偏差变化率与偏差异号时,Kp值取零或负值,以加快控制的动态过程。3、偏差变化率的大小表明偏差变化的速率,越大,取值越小,取值越大,反之亦然。同时,要结合偏差大小来考虑。4、微分作用可改善系统的动态特性,阻止偏差的变化,有助于减小超调量,消除振荡,缩短调节时间,允许加大,使系统稳态误差减小,提高控制精度,达到满意的控制效果。所以,在比较大时,取零,实际为PI控制;在比较小时,取一正值,实行PID控制。(3)常用整定方法:PID调节器参数整定方法很多,常见的工程整定方法有临界比例度法、衰减曲线法和经验法、凑试法。凑试法按照先比例(P)、再积分(I)、最后微分(D)的顺序。置调节器积分时间Ti=∞,微分时间Td=0,在比例系数按经验设置的初值条件下,将系统投入运行,由小到大整定比例系数。求得满意的1/4衰减度过渡过程曲线。第6页(共15页)引入积分作用(此时应将上述比例系数Kp设置为
本文标题:基于临界比例度法的PID控制器参数整定
链接地址:https://www.777doc.com/doc-4279443 .html