您好,欢迎访问三七文档
所谓邻近色,就是在色带上相邻近的颜色,例如绿色和蓝色,红色和黄色就互为邻近色。邻近色之间往往是你中有我,我中有你。比如:朱红与桔黄,朱红以红为主,里面略有少量黄色;桔黄以黄为主,里面有少许红色,虽然它们在色相上有很大差别,但在视觉上却比较接近。在色轮中,凡在90度范围之内的颜色都属邻近色的范围。邻近色一般有两个范围,绿蓝紫的邻近色大多数都是在冷色范围里的,红黄橙在暖色范围里的对比色是人的视觉感官所产生的一种生理现象,是视网膜对色彩的平衡作用。在色相环中每一个颜色对面(180度对角)的颜色,称为对比色(互补色).把对比色放在一起,会给人强烈的排斥感.若混合在一起,会调出浑浊的颜色.如:红与绿,蓝与橙,黄与紫互为对比色。也可以这样定义对比色:两种可以明显区分的色彩,叫对比色。包括色相对比、明度对比、饱和度对比、冷暖对比、补色对比、色彩和消色的对比等。是构成明显色彩效果的重要手段,也是赋予色彩以表现力的重要方法。其表现形式又有同时对比和相继对比之分。比如黄和蓝、紫和绿、红和青,任何色彩和黑、白、灰,深色和浅色,冷色和暖色,亮色和暗色都是对比色关系。补色是指在色谱中一原色和与其相对应的间色间所形成的互为补色关系。原色有三种,即红、黄、蓝,它们是不能再分解的色彩单位。三原色中每两组相配而产生的色彩称之为间色,如红加黄为橙色,黄加蓝为绿色,蓝加红为紫色,橙、绿、紫称为间色。红与绿、橙与蓝、黄与紫就是互为补色的关系。由于补色有强烈的分离性,故在色彩绘画的表现中,在适当的位置恰当地运用补色,不仅能加强色彩的对比,拉开距离感,而且能表现出特殊的视觉对比与平衡效果。应用范畴在服装,建筑,家居,美术,广告等设计中越来越多的运用对比色。现在的市场经济时代就是被关注的时代,在艺术设计中对比色的应用也越来越重要了。像黑白,红绿,蓝黄等经典对比色更是在各行各业屡试不爽。互补色对比,还有对比色对比,中差色对比等;互补色对比指在色相环上距离180度左右的颜色组对比,就是你说的几种,视觉效果强烈刺激,色彩对比达到最大的程度;对比色对比,指24色相环上间隔120左右的三色对比;如:品红-黄-青,橙红-黄绿-蓝,黄橙-青绿-紫等视觉效果饱满华丽,让人觉得欢乐活跃.容易让人兴奋激动中差色对比是在24色相环上间隔90度的颜色对比,效果比较明快;这3种中最激烈的是互补色对比,180度的那种。色彩中的互补色1﹑红色与绿色互补。2﹑蓝色与橙色互补。3﹑紫色与黄色互补。色彩中的互补色相互调和会使色彩纯度降低,变成灰色。一般作画的时候不用补色调和。不过在两种颜色互为补色的时候,一种颜色占的面积远大于另一种颜色的面积的时候,就可以增强画面的对比,使画面能够很显眼。一般情况下,补色运用有得有失。光学中的互补色假如两种色光(单色光或复色光)以适当地比例混合而能产生白色感觉时,则这两种颜色就称为“互为补色”。例如,波长为656mn的红色光和492nm的青色光为互为补色光;又如,品红与绿、黄与蓝、亦即三原色中任—种原色对其余两种的混合色光都互为补色。补色相减(如颜料配色时。将两种补色颜料涂在白纸的同一点上)时,就成为黑色。补色并列时,会引起强烈对比的色觉,会感到红的更红、绿的更绿。如将补色的饱和度减弱,即能趋向调和。非发光物体的颜色(如颜料),主要取决于它对外来光线的吸收和反射,所以该物的颜色与照射光有关。一般把物体在白昼光照射下所呈现的颜色称为该物体的颜色。如果将白昼光照射在黄蓝两种颜色混合后的表面时.因黄颜料能反射白光中的红、橙、黄和绿四种色光,而蓝色光能吸收其中的红、橙和黄三种色光,结果使混合颜料显示绿色。这种颜色的混合与色光的加色混合不同,称为减色混合。能把白光完全反射的物体叫白体;能完全吸收照射光的物体叫黑体(绝对黑体)。相关介绍互补色理论、色盲及阶段模型德国生理学家黑林(EwaldHerring)于19世纪50年代提出颜色的互补处理(opponentprocess)理论.他不同意流行的杨-赫尔姆霍兹的三色素理论,认为人眼中有三对互补色处理机制,三对互补色是:蓝黄,红绿,黑白。每一对中两种不能同时出现,两种互补,只能有一种占上风。三对互补机制输出的信号大小比例不同,人眼色觉就不同。黑林提出这种理论是因为受到颜色负后象现象的支持。颜色负后象现象比如,长久注视红花之后,再观看白色背景,你会看青色的花。参看图7。先注视红花上的“十”字半分钟,在看白纸,白纸上就会隐约显示出青色的花来。如果花是黄的,白纸上就会显示出蓝色花,如果花是绛色,白纸上会显示出绿色花。图7红花绿叶的负后象颜色按照黑林的意思,红绿是一对互补色,两种色光相加等于白色。而按照我们日常对“红”、“绿”的用法,红绿两种色光相加等于黄色光,而不是白色光,所以,黑林说的“红绿”是我们现在说的红青,绛绿,或一对介于两者之间的互补色。澄清这一点非常重要(后面我们谈到流行的阶段模型时还要谈到)。用黑林的理论可以这样解释负后象现象:当人眼长久注视红色时,“红绿”(红青)机制中性点向绿色方向偏移,以至白色变成“绿色”(青色)。其实三色素理论解释负后象现象更加直观:当人眼长久注视红色时,红色敏感细胞敏感性降低,以至白色显现出青色,即(B,G,R)由(1,1,1)变成(1,1,1-Δ);而(1,1,1-Δ)可以分解成白色(1-Δ,1-Δ,1-Δ)和青色(Δ,Δ,0)。色盲关于色盲的解释,黑林理论和杨-赫尔姆霍兹理论也各有所长。表3色盲现象及理论解释色盲现象互补色理论三色素理论红色盲(protanopia)红黄绿色调不易分辨,红色显得暗淡总有一个不好解释好解释绿色盲(deuteranopia)红黄绿色调不易分辨,绿色显得暗淡好解释蓝色盲(tritanopia)看不出蓝黄颜色,只有红白绿三种显然不同色觉好解释似乎不好解释红色盲较常见,蓝色盲极少见。色盲和遗传有关,据说男性较多,因为色盲在女性身上未必能表现出来。阶段模型由于黑林理论有某种长处,20世纪50年代,在美国心理学家Hurvich和Jameson的推崇之下,黑林理论重新得到重视。一种结合两种理论的阶段模型因此产生。按照这种理论,颜色信号在视细胞阶段以三色素形式(即B,G,R形式)存在,而在神经节细胞――视网膜输出信号的细胞――以互补色形式存在。视觉机制首先由B,G,R三色信号得到黄色和白色信号Y和W,B-Y得到蓝黄互补色信号,R-G得到红绿互补色信号,W和适应色或背景色信号相减,得到黑白互补信号。流行阶段模型如图8所示。图8流行的阶段模型--Walraven模型【26】这个模型有这样几个问题:1)“红”、“绿”的使用,前后不一致,如果红加绿等于黄,那么两者就不是黑林理论中的互补色,两者相减是无意义的。2)颜色相加是矢量相加,而不是分量相加,R+G和B+G+R不具有任何意义。由这样的加法也得不出黄色信号或白色信号。由于上述原因,网上有些阶段模型假设B,G,R三者的线性组合(三者乘上不同的系数后相加减)产生红绿互补信号。有些模型也不再强调中间的黄色信号产生。但是这样一来,阶段模型的互补处理就变成线性组合处理了。
本文标题:邻近色
链接地址:https://www.777doc.com/doc-4285031 .html