您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 第十三章13.4 课题学习 最短路径问题
八年级上册第十三章13.4课题学习——最短路径问题如图所示:从A地到B地有三条路可供选择,你会选择哪条路距离最短?你的理由是什么?FEDCBA两点之间线段最短引入新知如图,要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?P所以泵站建在点P可使输气管线最短引入新知引言:前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究数学史中著名的“将军饮马问题”.引入新知问题1相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A地出发,到一条笔直的河边l饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短?探索新知BAl精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?探索新知BAl想一想这是一个实际问题,你打算首先做什么?将A,B两地抽象为两个点,将河l抽象为一条直线.探索新知B··Al(1)从A地出发,到河边l饮马,然后到B地;(2)在河边饮马的地点有无穷多处,把这些地点与A,B连接起来的两条线段的长度之和,就是从A地到饮马地点,再回到B地的路程之和;探索新知现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设C为直线上的一个动点,上面的问题就转化为:当点C在l的什么位置时,AC与CB的和最小(如图).BAlC追问1若点A,B在直线l的异侧,如何找到这样的点C,使AC与CB的和最小?探索新知问题1如图,点A,B在直线l的同侧,点C是直线上的一个动点,当点C在l的什么位置时,AC与CB的和最小?B·lA·lB·A·C追问2对于问题1,如何将点B“移”到l的另一侧B′处,满足直线l上的任意一点C,都保持CB与CB′的长度相等?探索新知问题1如图,点A,B在直线l的同侧,点C是直线上的一个动点,当点C在l的什么位置时,AC与CB的和最小?B·lA·作点B关于直线l的对称点B′∟·B′作法:(1)作点B关于直线l的对称点B′;(2)连接AB′,与直线l相交于点C.则点C即为所求.探索新知问题1如图,点A,B在直线l的同侧,点C是直线上的一个动点,当点C在l的什么位置时,AC与CB的和最小?B·lA·B′C∟证明:如图,在直线l上任取一点C′(与点C不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC=B′C,BC′=B′C′.∴AC+BC=AC+B′C=AB′,AC′+BC′=AC′+B′C′.∵在△AB′C′中,AB′<AC′+B′C′,∴AC+BC<AC′+BC′.即AC+BC最短.探索新知追问3你能用所学的知识证明AC+BC最短吗?B·lA·B′CC′若直线l上任意一点(与点C不重合)与A,B两点的距离和都大于AC+BC,就说明AC+BC最小.探索新知B·lA·B′CC′追问1证明AC+BC最短时,为什么要在直线l上任取一点C′(与点C不重合),证明AC+BC<AC′+BC′?这里的“C′”的作用是什么?追问2回顾前面的探究过程,我们是通过怎样的过程、借助什么解决问题的?运用新知练习如图,一个旅游船从大桥AB的P处前往山脚下的Q处接游客,然后将游客送往河岸BC上,再返回P处,请画出旅游船的最短路径.ABCPQ山河岸大桥运用新知基本思路:由于两点之间线段最短,所以首先可连接PQ,线段PQ为旅游船最短路径中的必经线路.将河岸抽象为一条直线BC,这样问题就转化为“点P,Q在直线BC的同侧,如何在BC上找到一点R,使PR与QR的和最小”.ABCPQ山脚河岸大桥问题(造桥选址问题)如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直。)ABMNab探索新知BA1、如图假定任选位置造桥MN,连接AM和BN,从A到B的路径是AM+MN+BN,那么怎样确定什么情况下最短呢?MN2、利用线段公理解决问题我们遇到了什么障碍呢?思维分析3、能否将其转化为“点A、B分别是直线l异侧的两个点,在直线l上找到一点,使这个点到点A、点B的距离之和最短”的问题?·lA·B思维分析我们能否在不改变AM+MN+BN的前提下把桥转化到一侧呢?什么图形变换能帮助我们呢?1、把A向下平移一个桥长.2、把B向上平移一个桥长.3、把桥平移到和A相连.4、把桥平移到和B相连.思维分析BAA1MN如图,将点A沿与河岸垂直的方向平移点到A1,使AA1等于河宽,连接A1B交河岸于N作桥MN,此时路径AM+MN+BN最短理由:另任作桥M1N1,连接AM1,BN1,A1N1.N1M1由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1.AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1转化为AA1+A1N1+BN1.在△A1N1B中,由三边关系知A1N1+BN1>A1B.因此AM1+M1N1+BN1>AM+MN+BN问题解决·作法:1.将点B沿垂直于河岸的方向平移一个河宽到E,2.连接AE交河对岸与点M,则点M为建桥的位置,MN为所建的桥。证明:由平移的性质,得BN∥EM且BN=EM,MN=CD,BD∥CE,BD=CE,所以A.B两地的距离:AM+MN+BN=AM+MN+EM=AE+MN,若桥的位置建在CD处,连接AC.CD.DB.CE,则AB两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,在△ACE中,∵AC+CE>AE,∴AC+CE+MN>AE+MN,即AC+CD+DB>AM+MN+BN所以桥的位置建在CD处,AB两地的路程最短。A·BMNECD1、如图1,台球桌上有一个黑球,一个白球,如何用球杆去击白球使其撞到AB边反弹后再撞到黑球?2、如图2,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M、N,当△AMN周长最小时,∠AMN+∠ANM的度数为多少?图1图2DBACABDCA′A″NM巩固训练如图,A和B两地之间有两条河,现要在两条河上各造一座桥MN和PQ.桥分别建在何处才能使从A到B的路径最短?(假定河的两岸是平行的直线,桥要与河岸垂直)AB问题延伸如图,问题中所走总路径是AM+MN+NP+PQ+QB.QNABMP桥MN和PQ在中间,且方向不能改变,仍无法直接利用“两点之间,线段最短”解决问题,只有利用平移变换转移到两侧或同一侧先走桥长.平移的方法有三种:两个桥长都平移到A点处、都平移到B点处、MN平移到A点处,PQ平移到B点处.思维分析NMPQA1AB沿垂直于第一条河岸方向平移A点至A1点,沿垂直于第二条河岸方向平移B点至B1点,连接A1B1分别交A、B的对岸于N、P两点,建桥MN和PQ.最短路径AM+MN+NP+PQ+QB转化为AA1+A1B1+BB1.解决问题归纳小结在解决最短路径问题时,我们通常利用轴对称、平移等变化把已知问题转化为容易解决的问题,从而作出最短路径的选择教科书复习题13第15题.布置作业
本文标题:第十三章13.4 课题学习 最短路径问题
链接地址:https://www.777doc.com/doc-4303195 .html