您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 26.2二次函数图像与性质(第四课时)(华师大版)
16.2二次函数y=a(x-h)2+k的图象及其性质1说出下列函数图象的开口方向,对称轴,顶点,最值和增减变化情况:1)y=ax22)y=ax2+c3)y=a(x-h)2将抛物线y=ax²沿y轴方向平移c个单位,得抛物线y=ax²+c将抛物线y=ax²沿x轴方向平移h个单位,得抛物线y=a(x-h)2返回3请说出二次函数y=2(x-3)2与抛物线y=2(x+3)2如何由y=2x2平移而来2请说出二次函数y=ax²+c与y=ax²的平移关系。y=a(x-h)2与y=ax²的平移关系1探讨二次函数y=2x²,y=2(x-1)²,y=2(x-1)²+1的图象的关系?返回1.2.3.-1-2-3.0.1.2.3.4.-1xy5y=2(x-1)2+1y=2(x-1)2y=2x21.2.3.-1-2-3.0.1.2.3.4.-1xy5y=2(x-1)2+1y=2x2+1y=2x2返回联系:将函数y=2x²的图象向右平移1个单位,就得到y=2(x-1)²的图象;在向上平移2个单位,得到函数y=2(x-1)²+1的图象.相同点:(1)图像都是抛物线,形状相同,开口方向相同.(2)都是轴对称图形.(3)顶点都是最低点.(4)在对称轴左侧,都随x的增大而减小,在对称轴右侧,都随x的增大而增大.(5)它们的增长速度相同.不同点:(1)对称轴不同.(2)顶点不同.(3)最小值不相同.y=a(x-h)²+k开口方向对称轴顶点最值增减情况a0向上x=h(h,k)x=h时,有最小值y=kxh时,y随x的增大而减小;xh时,y随x的增大而增大.a0向下x=h(h,k)x=h时,有最大值y=kxh时,y随x的增大而增大;xh时,y随x的增大而减小.|a|越大开口越小.返回练习1:指出下面函数的开口方向,对称轴,顶点坐标,最值。1)y=2(x+3)2+52)y=4(x-3)2+73)y=-3(x-1)2-24)y=-5(x+2)2-6练习2:对称轴是直线x=-2的抛物线是()Ay=-2x2-2By=2x2-2Cy=-1/2(x+2)2-2Dy=-5(x-2)2-6C1.抛物线的顶点为(3,5)此抛物线的解析式可设为()Ay=a(x+3)2+5By=a(x-3)2+5Cy=a(x-3)2-5Dy=a(x+3)2-52.抛物线c1的解析式为y=2(x-1)2+3抛物线c2与抛物线c1关于x轴对称,请直接写出抛物线c2的解析式_____你答对了吗?1.B2.y=-2(x-1)2-33.二次函数y=a(x-m)2+2m,无论m为何实数,图象的顶点必在()上A)直线y=-2x上B)x轴上C)y轴上D)直线y=2x上4.对于抛物线y=a(x-3)2+b其中a0,b为常数,点(,y1)点(,y2)点(8,y3)在该抛物线上,试比较y1,y2,y3的大小35你答对了吗?3.D4.y3y1y21)若抛物线y=-x2向左平移2个单位,再向下平移4个单位所得抛物线的解析式是________2)如何将抛物线y=2(x-1)2+3经过平移得到抛物线y=2x23)将抛物线y=2(x-1)2+3经过怎样的平移得到抛物线y=2(x+2)2-14).若抛物线y=2(x-1)2+3沿x轴方向平移后,经过(3,5),求平移后的抛物线的解析式_______小结•顶点y=a(x-h)²+k(h,k)•对称轴直线x=h•最值当a0时当a0时x=h时,y有最小值kx=h时,y有最大值k
本文标题:26.2二次函数图像与性质(第四课时)(华师大版)
链接地址:https://www.777doc.com/doc-4306764 .html