您好,欢迎访问三七文档
|112338417520628730x1.1\\§§1x1.2§0t0§t§jr2¡r1j§§0jr02¡r01j§0§vxx08:x0=x¡vty0=yz0=zt0=t_r0=_r¡vÄr0=Ärx1.3F=mÄrFA!B=¡FB!A§§0§:F=mÄr§0:F0=mÄr0x1.4Maxwell)c=(¹00)¡1=2)c+v6=c|||(Michelson{Morley)21054¼0|x1.5§§§0|cx1.6(Doppler)x1.7MaxwellcPage290:1,2,3x2.1||\\3\(I{time)\(subjectivetime)¢¢¢¢¢¢¢¢¢¢¢¢|BC¢¢¢AAAXA\A¢¢¢¢¢¢¢¢¢¢¢¢|(pre{relativityphysics)(Euclideangeometry)|x2.2(x1¡x10)2+(x2¡x20)2+(x3¡x30)2=const(x01¡x010)2+(x02¡x020)2+(x03¡x030)2=const(1)x2.3¢xº¢x0º=(x0º¡x0º0)¢x0º=X®@x0º@x®¢x®+12X®;¯@2x0º@x®@x¯¢x®¢x¯+¢¢¢(2)(2)(1)Xº0@X®@x0º@x®¢x®+12X®;¯@2x0º@x®@x¯¢x®¢x¯+¢¢¢1A2=¸Xº¢x2º(3)(3)(¢x1;¢x2;¢x3)x0ºxºx0º=aº+X®bº®xa4¢x0º=X®bº®¢xa(4)x2.4xºxº(4)(relativityofdirection)(homogeneity)(isotropy)(4)x2.5OP§§0§§0(0;0;0;0)§§0cx2+y2+z2=c2t2x02+y02+z02=c2t02s02=c2t02¡x02¡y02¡z02=0s2=c2t2¡x2¡y2¡z2=0s2s2=c2t2¡x2¡y2¡z26=0()s2=0(x1;y1;z1;t1)(x2;y2;z2;t2)s2=c2(t2¡t1)2¡(x2¡x1)2¡(y2¡y1)2¡(z2¡z1)25A2=1s2=s02(5)x2.6§§0x=x(t)x0=x0(t0)(x;t)(x0;t0)8:x0=a00x+a01y+a02z+a03ty0=a10x+a11y+a12z+a13tz0=a20x+a21y+a22z+a23tt0=a30x+a31y+a32z+a33txx0yz8:x0=°x+¾ty0=yz0=zt0=¯x+®t®;¯;°;¾vx2.7§0§v§0dx0=dy0=dz0=0§vdxdt=¡¾°=v§dx=dy=dz=0§0¡vdx0dt0=¾®=¡v6®=°¯=¡´°8:x0=°(x¡vt)y0=yz0=zt0=°(¡´x+t)(6)°=1´=0x2.8(6)(5)c2°2(t¡´x)2¡°2(x¡vt)2=c2t2¡x28:c2°2¡v2°2=c2c2°2´2¡°2=¡12´c2°2¡2v°2)8:´=vc2°=1q1¡v2c2x2.98:x0=x¡vtq1¡v2c2y0=yz0=zt0=t¡vc2xq1¡v2c2(7)v!¡v8:x=x0+vt0q1¡v2c2y=y0z=z0t=t0+vc2x0q1¡v2c2(8)7x2.10Page290:4,5,6,7¢¢¢¢¢¢¢¢¢¢¢¢|||8x3.1O(0;0;0;0)P(x;y;z;t)s2=c2t2¡x2¡y2¡z2=c2t2¡r2s2s20ctrs20rcttrtt=0s2=0r=ctx3.2PPxyPctOOs2=0Ps20Ps20PPx3.3s2=0Ps20POPd¿¤PO¤POs20POPPO9x3.4OP§(x1;t1)(x2;t2)t2t1§0(x01;t01)(x02;t02)t02t01t0=t¡vc2xq1¡v2c2t02¡t01=t2¡t1¡vc2(x2¡x1)q1¡v2c2=(t2¡t1)q1¡v2c2µ1¡vc2x2¡x1t2¡t1¶=(t2¡t1)q1¡v2c2c2¡vuc2ccuc§0§vvcuc;vc)c2uvt02¡t010x3.5c))c10x3.6§(x1;t1)(x2;t2)jx2¡x1jcjt2¡t1jrct§t2t1§0t02¡t01=t2¡t1¡vc2(x2¡x1)q1¡v2c2=¡(t2¡t1)q1¡v2c2uc2µv¡c2u¶v¡c2u0t02t01v¡c2u=0t002=t001x3.7§(t2=t1)§0(t26=t1)§UmtmrmnUnUntn=tm+rmnc§11x3.8§0¢¿§§0¢¿¢s02=c2¢¿2§§0v§¢s2=c2¢t2¡(x2¡x1)2=c2¢t2¡v2¢t2c2¢¿2=c2¢t2¡v2¢t2¢t=¢¿q1¡v2c2¢¿d¿|x3.9§lC1C2§vC0C0C1C0C1C20C0C2§lv(1)C0C2C0(2)§0C2C0C2C0§0¿¢t=¢¿q1¡v2c2)lv=¿q1¡v2c212¿=lvr1¡v2c2lv§C0C0C1PC0C2Q§P(0;0)Q(l;lv)§0P(0;0)Q(0;¿)¿=lv¡vc2lq1¡v2c2=lvr1¡v2c2lv¢s2=c2¿2=c2l2v2¡l2=c2l2v2µ1¡v2c2¶§0C2lvC0¿§0§C0C10§C1C2§0§0C0C1C2RFFF§R(l;±)§0R(l0;0)0=±¡vc2lq1¡v2c2)±=vc2ll0=l¡v±q1¡v2c2=l¡v2c2lq1¡v2c2=lr1¡v2c2§0C2R(l;±)Q(l;lv)lv¡±=lvµ1¡v2c2¶=¿r1¡v2c2¿§0C2RQ13¢s2=c2¿2¡l02=c2l2v2µ1¡v2c2¶¡l2µ1¡v2c2¶=c2l2v2µ1¡v2c2¶2§§0§0§x3.10C§C0§t0C0§v(t0)C0dt0§dt=dt0q1¡v2(t0)c2C0§¢t=Idt=Idt0q1¡v2(t0)c2Idt0=¢t0¢tC¢t0C0C0CC0x3.11x§0P1P2§P1P2§§(x1;t1)(x2;t2)§0(x01;t01)(x02;t02)x01=x1¡vt1q1¡v2c2;x02=x2¡vt2q1¡v2c2t01=t1¡vc2x1q1¡v2c2;t02=t2¡vc2x2q1¡v2c2t1=t2x02¡x01=x2¡x1q1¡v2c214l=l0r1¡v2c2x2¡x1=(x02¡x02)³1¡v2c2´¡12t02=t01x3.12§ux=dxdt;uy=dydt;uz=dzdt§0§xv§0u0=dx0dt0x0=x¡vtq1¡v2c2;t0=t¡vc2xq1¡v2c2dx0=dx¡vdtq1¡v2c2=ux¡vq1¡v2c2dtdy0=dy;dz0=dzdt0=dt¡vc2dxq1¡v2c2=1¡vc2uxq1¡v2c2dtu0x=dx0dt0=ux¡v1¡vuxc2u0y=dy0dt0=q1¡v2c21¡vuxc2uy;u0z=dz0dt0=q1¡v2c21¡vuxc2uz15§0u0§ux=u0x+v1+vu0xc2)uxc=u0xc+vc1+vu0xc2uy=q1¡v2c21+vu0xc2u0y;uz=q1¡v2c21+vu0xc2u0z(v¿c;juj¿c)ux¼u0x+v;uy¼u0y;uz¼u0zx3.13jujcju0jcdtdxc2dt2¡(dx2+dy2+dz2)=c2dt02¡(dx02+dy02+dz02)8:dxdt=udx0dt0=u0)(c2¡u2)dt2=(c2¡u02)dt02uc)c2¡u20)c2¡u020)u0cx3.14§0§0cnn§0§xvux=u0x+v1+vu0xc2ux=cn+v1+vncv¿cux¼cn+µ1¡1n2¶vux=¡cn+v1¡vnc¼¡cn+µ1¡1n2¶v16x3.15c,|d¿Page290:8,9x4.1x=x1;y=x2;z=x3;ict=x4x01=x1¡vtq1¡v2c2=°x1+i¯°x4;x04=t¡vc2x1q1¡v2c2=¡i¯°x1+°x4¯=vc;°=1q1¡v2c2a=2664°00i¯°01000010¡i¯°00°3775=2664cosµ00sinµ01000010¡sinµ00cosµ3775(9)17sinµ=i¯°;cosµ=°;tanµ=i¯§0§v§0x01=const§(¼2+µ)dx4dx1=tan(¼2+µ))dx1dx4=1icdx1dt=vic=¡tanµa¡1=~a=2664°00¡i¯°01000010i¯°00°3775=2664cosµ00¡sinµ01000010sinµ00cosµ3775~aa=Ix4.2|d¿=dscT0=Tdx¹U¹=dx¹d¿V0¹=a¹ºVºU¹=dx¹d¿=dx¹dtdtd¿=°dx¹dt=°(u1;u2;u3;ic)v¿c¡c2T0¹º=a¹¸aº¿T¸¿18x4.3)Á=k¢x¡!t=k0¢x0¡!0t0=Á0=constk0¹x0¹=k¹x¹=const)k¹=³k;i!c´8:k01=°¡k1¡vc2!¢k02=k2k03=k3!0=°(!¡vk1)kxµk0xµ0k1=!ccosµ;k01=!0ccosµ0k01=°³!ccosµ¡vc2!´=°!c³cosµ¡vc´!0=!°³1¡vccosµ´tanµ0=p1¡cos2µ0cosµ0=s!02c2k021¡1=p!02¡c2k021ck01=q!02!2¡c2k021!2°¡cosµ¡vc¢=q°2¡1¡vccosµ¢2¡°2¡cosµ¡vc¢2°¡cosµ¡vc¢=sinµ°¡cosµ¡vc¢§0!0=!0!=!0°¡1¡vccosµ¢(10)v¿c°¼1!¼!0¡1¡vccosµ¢19|!=!0r1¡v2c2!=!0x4.4²²²²²²F¹=G¹F¹G¹a¹ºFº=a¹ºGº)F0¹=G0¹x4.5|Page291:10,1120)c½JEBx5.1QQ=Z½dV=const½0dV0udV=r1¡u2c2dV0½0dV0=½dV½=½0q1¡u2c2=°u½0(11)uJ=½u=°u½0u(12)U¹=°(u1;u2;u3;ic)(11)(12)J¹=½0U¹=½0°u(u;ic)=(°u½0u;ic°u½0)=(J;ic½)21x5.2J¹=(J;ic½)r¢J+@½@t=0@J¹@x¹=@J1@x1+@J2@x2+@J3@x3+@@(ict)(ic½)=0(13)(13)|½J½J½Jx5.3r2A¡1c2@2A@t2=¡¹0J;r2'¡1c2@2'@t2=¡½0r¢A+1c2@'@t=0(14)¤´r2¡1c2@2@t2=@@x¹@@x¹(14)¤A=¡¹0J;¤'=¡½0=¡¹0c2½=ic¹0(ic½)A'A¹=µA;ic'¶22¤A¹=¡¹0J¹r¢A+1c2@'@t=r¢A+@(ic')@(ict)=@A¹@x¹=0A0¹=a¹ºAº8:A0x=°(Ax¡vc2')A0y=AyA0z=Az'0=°('¡vAx)x5.4B=r£A;E=¡r'¡@A@tB1=@A3@x2¡@A2@x3;B2=@A1@x3¡@A3@x1;B3=@A2@x1¡@A1@x2(15)E1=¡@'@x1¡@A1@t=ic@¡ic'¢@x1¡ic@A1@(ict)=icµ@A4@x1¡@A1@x4¶(16)E2=icµ@A4@x2¡@A2@x4¶;E3=icµ@A4@x3¡@A3@x4¶(17)F¹º=@Aº@x¹¡@A¹@xº(15)(16)(17)F¹º=26640B3¡B2¡icE1¡B30B1¡icE2B2¡B10¡icE3icE1icE2icE30377523x5.5r¢E=½0;r£B=¹00@E@t+¹0J@F¹
本文标题:6.狭义相对论
链接地址:https://www.777doc.com/doc-4311642 .html