您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > s3c2440对nandflash的操作
nandflash在对大容量的数据存储中发挥着重要的作用。相对于norflash,它具有一些优势,但它的一个劣势是很容易产生坏块,因此在使用nandflash时,往往要利用校验算法发现坏块并标注出来,以便以后不再使用该坏块。nandflash没有地址或数据总线,如果是8位nandflash,那么它只有8个IO口,这8个IO口用于传输命令、地址和数据。nandflash主要以page(页)为单位进行读写,以block(块)为单位进行擦除。每一页中又分为main区和spare区,main区用于正常数据的存储,spare区用于存储一些附加信息,如块好坏的标记、块的逻辑地址、页内数据的ECC校验和等。三星公司是最主要的nandflash供应商,因此在它所开发的各类处理器中,实现对nandflash的支持就不足为奇了。s3c2440不仅具有nandflash的接口,而且还可以利用某些机制实现直接从nandflash启动并运行程序。本文只介绍如何对nandflash实现读、写、擦除等基本操作,不涉及nandflash启动程序的问题。在这里,我们使用的nandflash为K9F2G08U0A,它是8位的nandflash。不同型号的nandflash的操作会有所不同,但硬件引脚基本相同,这给产品的开发带来了便利。因为不同型号的PCB板是一样的,只要更新一下软件就可以使用不同容量大小的nandflash。K9F2G08U0A的一页为(2K+64)字节(加号前面的2K表示的是main区容量,加号后面的64表示的是spare区容量),它的一块为64页,而整个设备包括了2048个块。这样算下来一共有2112M位容量,如果只算main区容量则有256M字节(即256M×8位)。要实现用8个IO口来要访问这么大的容量,K9F2G08U0A规定了用5个周期来实现。第一个周期访问的地址为A0~A7;第二个周期访问的地址为A8~A11,它作用在IO0~IO3上,而此时IO4~IO7必须为低电平;第三个周期访问的地址为A12~A19;第四个周期访问的地址为A20~A27;第五个周期访问的地址为A28,它作用在IO0上,而此时IO1~IO7必须为低电平。前两个周期传输的是列地址,后三个周期传输的是行地址。通过分析可知,列地址是用于寻址页内空间,行地址用于寻址页,如果要直接访问块,则需要从地址A18开始。由于所有的命令、地址和数据全部从8位IO口传输,所以nandflash定义了一个命令集来完成各种操作。有的操作只需要一个命令(即一个周期)即可,而有的操作则需要两个命令(即两个周期)来实现。下面的宏定义为K9F2G08U0A的常用命令:#defineCMD_READ10x00//页读命令周期1#defineCMD_READ20x30//页读命令周期2#defineCMD_READID0x90//读ID命令#defineCMD_WRITE10x80//页写命令周期1#defineCMD_WRITE20x10//页写命令周期2#defineCMD_ERASE10x60//块擦除命令周期1#defineCMD_ERASE20xd0//块擦除命令周期2#defineCMD_STATUS0x70//读状态命令#defineCMD_RESET0xff//复位#defineCMD_RANDOMREAD10x05//随意读命令周期1#defineCMD_RANDOMREAD20xE0//随意读命令周期2#defineCMD_RANDOMWRITE0x85//随意写命令在这里,随意读命令和随意写命令可以实现在一页内任意地址地读写。读状态命令可以实现读取设备内的状态寄存器,通过该命令可以获知写操作或擦除操作是否完成(判断第6位),以及是否成功完成(判断第0位)。下面介绍s3c2440的nandflash控制器。s3c2440支持8位或16位的每页大小为256字,512字节,1K字和2K字节的nandflash,这些配置是通过系统上电后相应引脚的高低电平来实现的。s3c2440还可以硬件产生ECC校验码,这为准确及时发现nandflash的坏块带来了方便。nandflash控制器的主要寄存器有NFCONF(nandflash配置寄存器),NFCONT(nandflash控制寄存器),NFCMMD(nandflash命令集寄存器),NFADDR(nandflash地址集寄存器),NFDATA(nandflash数据寄存器),NFMECCD0/1(nandflash的main区ECC寄存器),NFSECCD(nandflash的spare区ECC寄存器),NFSTAT(nandflash操作状态寄存器),NFESTAT0/1(nandflash的ECC状态寄存器),NFMECC0/1(nandflash用于数据的ECC寄存器),以及NFSECC(nandflash用于IO的ECC寄存器)。NFCMMD,NFADDR和NFDATA分别用于传输命令,地址和数据,为了方便起见,我们可以定义一些宏定义用于完成上述操作:#defineNF_CMD(data){rNFCMD=(data);}//传输命令#defineNF_ADDR(addr){rNFADDR=(addr);}//传输地址#defineNF_RDDATA()(rNFDATA)//读32位数据#defineNF_RDDATA8()(rNFDATA8)//读8位数据#defineNF_WRDATA(data){rNFDATA=(data);}//写32位数据#defineNF_WRDATA8(data){rNFDATA8=(data);}//写8位数据其中rNFDATA8的定义为(*(volatileunsignedchar*)0x4E000010)。NFCONF主要用到了TACLS、TWRPH0、TWRPH1,这三个变量用于配置nandflash的时序。s3c2440的数据手册没有详细说明这三个变量的具体含义,但通过它所给出的时序图,我们可以看出,TACLS为CLE/ALE有效到nWE有效之间的持续时间,TWRPH0为nWE的有效持续时间,TWRPH1为nWE无效到CLE/ALE无效之间的持续时间,这些时间都是以HCLK为单位的(本文程序中的HCLK=100MHz)。通过查阅K9F2G08U0A的数据手册,我们可以找到并计算该nandflash与s3c2440相对应的时序:K9F2G08U0A中的tWP与TWRPH0相对应,tCLH与TWRPH1相对应,(tCLS-tWP)与TACLS相对应。K9F2G08U0A给出的都是最小时间,s3c2440只要满足它的最小时间即可,因此TACLS、TWRPH0、TWRPH1这三个变量取值大一些会更保险。在这里,这三个值分别取1,2和0。NFCONF的第0位表示的是外接的nandflash是8位IO还是16位IO,这里当然要选择8位的IO。NFCONT寄存器是另一个需要事先初始化的寄存器。它的第13位和第12位用于锁定配置,第8位到第10位用于nandflash的中断,第4位到第6位用于ECC的配置,第1位用于nandflash芯片的选取,第0位用于nandflash控制器的使能。另外,为了初始化nandflash,还需要配置GPACON寄存器,使它的第17位到第22位与nandflash芯片的控制引脚相对应。下面的程序实现了初始化nandflash控制器:voidNF_Init(void){rGPACON=(rGPACON&~(0x3f17))|(0x3f17);//配置芯片引脚//TACLS=1、TWRPH0=2、TWRPH1=0,8位IOrNFCONF=(TACLS12)|(TWRPH08)|(TWRPH14)|(00);//非锁定,屏蔽nandflash中断,初始化ECC及锁定main区和spare区ECC,使能nandflash片选及控制器rNFCONT=(013)|(012)|(010)|(09)|(08)|(16)|(15)|(14)|(11)|(10);}为了更好地应用ECC和使能nandflash片选,我们还需要一些宏定义:#defineNF_nFCE_L(){rNFCONT&=~(11);}#defineNF_CE_L()NF_nFCE_L()//打开nandflash片选#defineNF_nFCE_H(){rNFCONT|=(11);}#defineNF_CE_H()NF_nFCE_H()//关闭nandflash片选#defineNF_RSTECC(){rNFCONT|=(14);}//复位ECC#defineNF_MECC_UnLock(){rNFCONT&=~(15);}//解锁main区ECC#defineNF_MECC_Lock(){rNFCONT|=(15);}//锁定main区ECC#defineNF_SECC_UnLock(){rNFCONT&=~(16);}//解锁spare区ECC#defineNF_SECC_Lock(){rNFCONT|=(16);}//锁定spare区ECCNFSTAT是另一个比较重要的寄存器,它的第0位可以用于判断nandflash是否在忙,第2位用于检测RnB引脚信号:#defineNF_WAITRB(){while(!(rNFSTAT&(10)));}//等待nandflash不忙#defineNF_CLEAR_RB(){rNFSTAT|=(12);}//清除RnB信号#defineNF_DETECT_RB(){while(!(rNFSTAT&(12)));}//等待RnB信号变高,即不忙下面就详细介绍K9F2G08U0A的基本操作,包括复位,读ID,页读、写数据,随意读、写数据,块擦除等。复位操作最简单,只需写入复位命令即可:staticvoidrNF_Reset(){NF_CE_L();//打开nandflash片选NF_CLEAR_RB();//清除RnB信号NF_CMD(CMD_RESET);//写入复位命令NF_DETECT_RB();//等待RnB信号变高,即不忙NF_CE_H();//关闭nandflash片选}读取K9F2G08U0A芯片ID操作首先需要写入读ID命令,然后再写入0x00地址,就可以读取到一共五个周期的芯片ID,第一个周期为厂商ID,第二个周期为设备ID,第三个周期至第五个周期包括了一些具体的该芯片信息,这里就不多介绍:staticcharrNF_ReadID(){charpMID;charpDID;charcyc3,cyc4,cyc5;NF_nFCE_L();//打开nandflash片选NF_CLEAR_RB();//清RnB信号NF_CMD(CMD_READID);//读ID命令NF_ADDR(0x0);//写0x00地址//读五个周期的IDpMID=NF_RDDATA8();//厂商ID:0xECpDID=NF_RDDATA8();//设备ID:0xDAcyc3=NF_RDDATA8();//0x10cyc4=NF_RDDATA8();//0x95cyc5=NF_RDDATA8();//0x44NF_nFCE_H();//关闭nandflash片选return(pDID);}下面介绍读操作,读操作是以页为单位进行的。如果在读取数据的过程中不进行ECC校验判断,则读操作比较简单,在写入读命令的两个周期之间写入要读取的页地址,然后读取数据即可。如果为了更准确地读取数据,则在读取完数据之后还要进行ECC校验判断,以确定所读取的数据是否正确。在上文中我们已经介绍过,nandflash的每一页有两区:main区和spare区,main区用于存储正常的数据,spare区用于存储其他附加信息,其中就包括ECC校验码。当我们在写入数据的时候,我们就计算这一页数据的ECC校验码,然后把校验
本文标题:s3c2440对nandflash的操作
链接地址:https://www.777doc.com/doc-4339941 .html