您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 高数下学期期中论文――微积分论文
1《高等数学》期中论文姓名:周若男学号:5403212047班级:ACCA121系别:经济与管理学院微积分在生活中的应用摘要:微积分是大学必修的高等数学课程,对于很多学生来说,是一道很难攻克的关卡,因为太难所以只花费了大多数的时间来研究它的定律和练习,从来没想过,微积分对于我们的生活有很大的帮助。这篇论文,就是想要了解一下微积分在生活中的应用。关键词:物理,经济,应用。正文:许多大学生都只是单纯的在高数课程中认识微积分,在不断的练习和考试中认识微积分,却从来没有想过它早已深入我们的生活,它的出现是因为生活的需要,它的完善随着生活的发展而继续,它更是创造了许多有用的生活应用。或许你们不了解,那么下面会为你带来微积分的奇妙生活之旅。2牛顿、莱布尼兹发明微积分以后,人们才有能力把握运动和过程。有了微积分,就有了工业革命,就有了大工业生产,也就有了现代化的社会。航天飞机、宇宙飞船等现代化交通工具都是在微积分的帮助下制造出来的。曼昆的宏观和微观经济学也通过运用微积分解决和分析了一系列的政策和解决办法。微积分在人类社会从农业文明跨入工业文明的过程中起到了决定性的作用。微积分是为了解决变量的瞬时变化率而存在的。从数学的角度讲,是研究变量在函数中的作用;从物理的角度讲,是为了解决长期困扰人们的关于速度与加速度的定义的问题;从经济的角度讲,是为了解决财务以及金融上的各种纠纷,从微观或者宏观的角度谈论不同的经济模型和模式或者分析研究出台的经济政策和未来的经济前景。“变”这个字是微积分最大的奥义。下面就来让我们具体看看它的应用吧。(一)在物理中的应用例1,研究物体做匀变速直线运动位移问题时;对于匀速直线运动,位移和速度之间的关系我们都清楚,x=vt,但如果物体的速度大小时刻发生变化,那么物体的位移如何求解呢?此时,微积分就成了我们有利工具。我们可以把物体运动的时间无限细分。在每一份时间内,速度的变化量非常小,可以忽略这种微小变化,认为物体在做匀3速直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相加,即“无限求和”,则总的位移可以知道。现在我们明白,物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的面积;例2,研究匀速圆周向心加速度的方向问题时;根据牛顿第二定律,我们可以知道匀速圆周运动加速度的方向指向圆心;同时利用极限思想,也可以加速度的方向。当圆周上的两个点无限靠近时,速度变化量也无限的小,因此由VAVB△V围成的等腰三角形的底角接近90,因此速度变化量和速度垂直,而速度又和半径垂直,因此,匀变速圆周运动中,加速度的方向始终指向圆心。例3.研究变力做功问题时;对于恒力做功,我们可以利用公式直接求出;但对于变力,我们不能利用公式;这种情况下,我们要借助于微积分,我们可以把位移无限细分,在每一个小位移上,力的变化很小,可以看作是恒力,根据公式算出力所作的功;然后把每一个小位移上的功无限求和,那么就可以求出变力做的总功是多少。(二)在经济上的应用1.11.1.1设需求函数Q=f(p)在点p处可导(其中Q为需求量,4P为商品价格),则其边际函数Q=f(p)称为边际需求函数,简称边际需求。类似地,若供给函数Q=Q(P)可导(其中Q为供给量,P为商品价格),则其边际函数Q=Q(p)称为1.1.2总成本函数C=C(Q)=C0+C1(Q);平均成本函数=(Q)=C(Q)Q;边际成本函数C’=C(Q).C(Q0)称为当产量为Q0时的边际成本,其经济意义为:当产量达到Q0时,如果增减一个单位产品,则成本将相应增减C(Q0)1.1.3总收益函数R=R(Q);平均收益函数=(Q);边际收益函数R’=R’(Q)R’(Q0)称为当商品销售量为Q0时的边际收益。其经济意义为:当销售量达到Q0时,如果增减一个单位产品,则收益将相应地增减R(Q0)1.1.4利润函数L=L(Q)=R(Q)-C(Q);平均利润函数;=(Q)边际利润函数L’=L’(Q)=R’(Q)-C’(Q).L’(Q0)称为当产量为Q0时的边际利润,其经济意义是:当产量达到Q0时,如果增减一个单位产品,则利润将相应增减L’(Q0)5例1某企业每月生产Q(吨)产品的总成本C(千元)是产量Q的函数,C(Q)=Q2-10Q+20。如果每吨产品销售价格2万元,求每月生产10吨、15吨、20吨时的边际利润。解:每月生产QR(Q)=20QL(Q)=R(Q)-C(Q)=20Q-(Q2-1Q+20=-Q2+30Q-20L’(Q)=(-Q2+30Q-20)’=-2Q+30则每月生产10吨、15吨、20吨的边际利润分别为L’(10)=-2×10+30=10(千元/L’(15)=-2×15+30=0(千元/L’(20)=-2×20+30=-10(千元/以上结果表明:当月产量为10吨时,再增产1吨,利润将增加1万元;当月产量为15吨时,再增产1吨,利润则不会增加;当月产量为20吨时,再增产1吨,利润反而减少1显然,企业不能完全靠增加产量来提高利润,那么保持1.21.2.16设函数y=f(x)在点x处可导,函数的相对改变量Δyy=f(x+Δx)-f(x)y与自变量的相对改变量Δxx之比,当Δx→0时的极限称为函数y=f(x)在点x处的相对变化率,或称为弹性函数。记为EyEx•EyEx=limx→0yyxx=limx→0yx.xy=f’(x)xf(x)在点x=x0处,弹性函数值Ef(x0)Ex=f’(x0)xf(x0)称为f(x)在点x=x0处的弹性值,简称弹性。EExf(x0)%表示在点x=x0处,当x产生1%的改变时,f(x)近似地改变EExf(x0)%1.2.2需求弹性经济学中,把需求量对价格的相对变化率称为需求弹性。对于需求函数Q=f(P)(或P=P(Q)),由于价格上涨时,商品的需求函数Q=f(p)(或P=P(Q))为单调减少函数,ΔP与ΔQ异号,所以特殊地定义,需求对价格的弹性函数为η(p)=-f’(p)pf(p)例2设某商品的需求函数为Q=e-p5(1)需求弹性函数;(2)P=3,P=5,P=6时的需求弹性。解:(1)η(p)=-f’(p)pf(p)=-(-15)e-p5.pe-p5=p5;(2)η(3)=35=0.6;η(5)=55=1;η(6)=65=1.27η(3)=0.61,说明当P=3时,价格上涨1%,需求只减少0.6%,需求变动的幅度小于价格变动的幅度。η(5)=1,说明当P=5时,价格上涨1%,需求也减少1%,价格与需求变动的幅度相同。微积分在经济领域中的应用广泛,主要是研究在这一领域中出现的一些函数关系,导数在经济学中的应用是十分广泛的,因为在经济学中很多函数里面都有导数的存在才能去进行一些定量分析进而得出最优化的结果。根据导数的一些性质可以为大家解释一些经济学函数图像的走向问题,为何会出现此种走向等等。同样的在极限的概念基础上面,很多微积分的概念理论得到发展,很多经济学的知识也得到有效的解决。像一些复利问题,还有用极限方法解决弹性计算问题。积分的应用是由人们在生产生活活动中,为了解决复杂和动态过程的量化累积而引入的。在日常经济活动中,积分的应用也非常广泛,比如求总值(如总成本和总利润等),包括其他变量时间累计的总量等。这些经济活动内容涉及到很多个领域,且函数表达方式都有所不同,但它们的原理都是一样的。这些都是微积分在经济学中的广泛应用。结论:微积分诞生之前,人类基本上还处在农耕文明时期。微积分学是继解析几何产生后的又一个伟大的数学创造。微积分为创立许多新的学科提供了源泉。微积分的建立是人类头脑最伟大的创造之一,是人类理性思维的结晶。它8给出一整套的科学方法,开创了科学的新纪元,并因此加强与加深了数学的作用。微积分的产生不仅具有伟大的科学意义,而且具有深远的社会影响。有了微积分,就有了工业革命,有了大工业生产,也就有了现代化的社会。在微积分的帮助下,万有引力定律发现了。微积分学强有力地证明了宇宙的数学设计,摧毁了笼罩在天体上的神秘主义、迷信和神学。这一切都表明微积分学的产生是人类认识史上的一次空前的飞跃,也表明微积分是生活不可或缺的应用“必需品”!你了解了吗?参考文献:网络资源
本文标题:高数下学期期中论文――微积分论文
链接地址:https://www.777doc.com/doc-4340925 .html