您好,欢迎访问三七文档
1/9高考中数学直线和圆的解法1、直线的倾斜角:(1)定义:在平面直角坐标系中,对于一条与x轴相交的直线l,如果把x轴绕着交点按逆时针方向转到和直线l重合时所转的最小正角记为,那么就叫做直线的倾斜角。当直线l与x轴重合或平行时,规定倾斜角为0;(2)倾斜角的范围,0。如(1)直线023cosyx的倾斜角的范围是____(答:5[0][)66,,);(2)过点),0(),1,3(mQP的直线的倾斜角的范围m那么],32,3[值的范围是______(答:42mm或)2、直线的斜率:(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k,即k=tan(≠90°);倾斜角为90°的直线没有斜率;(2)斜率公式:经过两点111(,)Pxy、222(,)Pxy的直线的斜率为212121xxxxyyk;(3)直线的方向向量(1,)ak,直线的方向向量与直线的斜率有何关系?(4)应用:证明三点共线:ABBCkk。提醒:(1)直线的倾斜角α一定存在,但斜率不一定存在。(2)直线的倾斜角与斜率的变化关系:若直线存在斜率k,而倾斜角为α,则k=tanα.当倾斜角是锐角是,斜率k随着倾斜角α的增大而增大。当α是钝角时,k与α同增减.(3)斜率的求法:依据倾斜角:,2tank,牢记图像依据两点的坐标:211212xxxxyyk依据直线方程:化为斜截式αOK2/9当已知k,求倾斜角α时:k≥0时,α=arctank;k0时,α=π+arctank。(4)kal,的方向向量之一:直线1(你知道如何由直线的方向向量来求斜率吗?)如(1)两条直线斜率相等是这两条直线平行的____________条件(答:既不充分也不必要);(2)实数,xy满足3250xy(31x),则xy的最大值、最小值分别为______(答:2,13)3、直线的方程:(1)点斜式:已知直线过点00(,)xy斜率为k,则直线方程为00()yykxx,它不包括垂直于x轴的直线。(2)斜截式:已知直线在y轴上的截距为b和斜率k,则直线方程为ykxb,它不包括垂直于x轴的直线。(3)两点式:已知直线经过111(,)Pxy、222(,)Pxy两点,则直线方程为121121xxxxyyyy,它不包括垂直于坐标轴的直线。(4)截距式:已知直线在x轴和y轴上的截距为,ab,则直线方程为1byax,它不包括垂直于坐标轴的直线和过原点的直线。(5)一般式:任何直线均可写成0AxByC(A,B不同时为0)的形式。如(1)经过点(2,1)且方向向量为v=(-1,3)的直线的点斜式方程是___________(答:13(2)yx);(2)直线(2)(21)(34)0mxmym,不管m怎样变化恒过点______(答:(1,2));(3)若曲线||yax与(0)yxaa有两个公共点,则a的取值范围是_______(答:1a)提醒:(1)直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线,还有截距式呢?);(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等直线的斜率为-1或直线过原点;直线两截距互为相反数直线的斜率为1或直线过原点;直线两截距绝对值相3/9等直线的斜率为1或直线过原点。如过点(1,4)A,且纵横截距的绝对值相等的直线共有___条(答:3)4.设直线方程的一些常用技巧:(1)知直线纵截距b,常设其方程为ykxb;(2)知直线横截距0x,常设其方程为0xmyx(它不适用于斜率为0的直线);(3)知直线过点00(,)xy,当斜率k存在时,常设其方程为00()ykxxy,当斜率k不存在时,则其方程为0xx;(4)与直线:0lAxByC平行的直线可表示为10AxByC(1CC);(5)与直线:0lAxByC垂直的直线可表示为10BxAyC.(6)已知直线l1:A1x+B1y+C1=0,直线l2:A2x+B2y+C2=0,则方程A1x+B1y+C1+λ(A2x+B2y+C2)=0表示过l1与l2交点的直线系(不含l2).不仅可以建立直线方程还可解决直线过定点问题.提醒:(1)求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解。(2)求解直线方程的最后结果,如无特别强调,都应写成一般式.(3)求一个角的平分线所在的直线方程的方法:法一、利用角的平分线所在的直线的方向向量①由顶点坐标(含线段端点)或直线方程求得角两边的方向向量12vv、;②求出角平分线的方向向量1212vvvvv③由点斜式或点向式得出角平分线方程。{直线的点向式方程:过P(00,xy),其方向向量为(,)vab,其方程为00xxyyab}法二、利用角平分线定理:法三、利用点到直线的距离公式:设),(yxP为角平分线所在直线上的任意一点,通过),(yxP到两边距离相等而得.5、点到直线的距离及两平行直线间的距离:(1)点00(,)Pxy到直线0AxByC的距离0022AxByCdAB;4/9(2)两平行线1122:0,:0lAxByClAxByC间的距离为1222CCdAB。提醒:(1)公式要求直线方程为一般式.(2)求平行直线间的距离时,一定要把x、y项系数化成对应相等的系数.6、直线1111:0lAxByC与直线2222:0lAxByC的位置关系:(1)平行12210ABAB(斜率)且12210BCBC(在y轴上截距);(2)相交12210ABAB;(3)重合12210ABAB且12210BCBC。提醒:(1)111222ABCABC、1122ABAB、111222ABCABC仅是两直线平行、相交、重合的充分不必要条件!为什么?(2)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中提到的两条直线都是指不重合的两条直线;(3)直线1111:0lAxByC与直线2222:0lAxByC垂直12120AABB。如(1)设直线1:60lxmy和2:(2)320lmxym,当m=_______时1l∥2l;当m=________时1l2l;当m_________时1l与2l相交;当m=_________时1l与2l重合(答:-1;12;31且mm;3);(2)已知直线l的方程为34120xy,则与l平行,且过点(—1,3)的直线方程是______(答:3490xy);(3)两条直线40axy与20xy相交于第一象限,则实数a的取值范围是____(答:12a);(4)设,,abc分别是△ABC中∠A、∠B、∠C所对边的边长,则直线sin0Axayc与sinsin0bxByC的位置关系是____(答:垂直);(5)已知点111(,)Pxy是直线:(,)0lfxy上一点,222(,)Pxy是直线l外一点,则方程1122(,)(,)(,)fxyfxyfxy=0所表示的直线与l的关系是____(答:平行);5/9(6)直线l过点(1,0),且被两平行直线360xy和330xy所截得的线段长为9,则直线l的方程是________(答:43401xyx和)7.对称是平面几何的基本变换,有关对称的一些结论①点(a,b)关于x轴、y轴、原点、直线y=x的对称点分别是(a,-b),(-a,b),(-a,-b),(b,a)②如何求点A(a,b)关于直线Ax+By+C=0的对称点A?上中点在⊥对称关于直线、点lAAlAAlAAkkAAAA''·中点坐标满足方程ll1点关于直线bxy的对称点是什么?③直线Ax+By+C=0关于x轴、y轴、原点、直线y=x的对称的直线方程分别是什么,关于点(a,b)对称的直线方程又是什么?你能用哪些方法来求一条直线关于另一条直线的对称直线?④如何处理与光的入射与反射问题?8、圆的方程:⑴圆的标准方程:222xaybr。⑵圆的一般方程:22220(DE4F0)+-xyDxEyF,特别提醒:只有当22DE4F0+-时,方程220xyDxEyF才表示圆心为(,)22DE,半径为22142DEF的圆(二元二次方程220AxBxyCyDxEyF表示圆的充要条件是什么?(0,AC且0B且2240DEAF));在圆的标准方程)0()()(222rrbyax中有三个参数rba,,;在圆的一般方程022FEyDxyx中,也有三个参数FED,,。所以说三个互相独立的条件确定一个圆。在平面几何中也是熟悉的事实:不共线的三点唯一地确定一个圆。确定一个圆,包括确定圆的位置和大小两个方面。圆心确定圆的位置,半径确定圆的大小。又称圆心是圆的定位条件,半径是圆的定形条件。⑶圆的参数方程:cossinxarybr(为参数),其中圆心为(,)ab,半径为r。在参数方程sincosrbyrax中,当为参数,t为常量)0(t时表示一个圆,有几何意义;6/9而当t为参数,为常量时,表示一条直线,t也有几何意义。圆的参数方程的主要应用是三角换元:222cos,sinxyrxryr;22xytcos,sin(0)xryrrt。⑷1122A,,,xyBxy为直径端点的圆方程12120xxxxyyyy过两圆交点的圆系方程设圆0:111221FyExDyxC,圆0:222222FyExDyxC有公共点,则经过圆1C和圆2C的公共点的圆系方程为:0)()(2222211122FyExDyxFyExDyx(其中为参数,1,R,方程不包括圆2C。)在有些问题中需检验圆2C是否也为所求;当1时,该方程是一条直线的方程,此直线就是两圆的公共弦所在直线。3.过直线与圆的交点的圆系方程设直线0:CByAxl与圆022FEyDxyx有公共点,则过其交点的圆系方程为0)()(22CByAxFEyDxyx。如(1)圆C与圆22(1)1xy关于直线yx对称,则圆C的方程为____________(答:22(1)1xy);(2)圆心在直线32yx上,且与两坐标轴均相切的圆的标准方程是__________(答:9)3()3(22yx或1)1()1(22yx);(3)已知(1,3)P是圆cossinxryr(为参数,02)上的点,则圆的普通方程为________,P点对应的值为_______,过P点的圆的切线方程是___________(答:224xy=;23;340xy);(4)如果直线l将圆:x2+y2-2x-4y=0平分,且不过第四象限,那么l的斜率的取值范围是____(答:[0,2]);(5)方程x2+y2-x+y+k=0表示一个圆,则实数k的取值范围为____(答:21k);(6)若3cos{(,)|3sinxMxyy(为参数,0)},bxyyxN|),(,若NM,7/9则b的取值范围是_________(答:3,32-)8、点与圆的位置关系:已知点00M,xy及圆222C0:x-aybrr,(1)点M在圆C外22200CMrxaybr;(2)点M在圆C内22200CMrxaybr;(3)点M在圆C上20CMrxa220ybr。如点P(5a+1,12a)在圆(x-1)2+y2
本文标题:直线与圆解法
链接地址:https://www.777doc.com/doc-4348912 .html