您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 圆锥曲线中的热点问题(总结的非常好).
第3讲圆锥曲线中的热点问题【高考考情解读】1.本部分主要以解答题形式考查,往往是试卷的压轴题之一,一般以椭圆或抛物线为背景,考查弦长、定点、定值、最值、范围问题或探索性问题,试题难度较大.2.求轨迹方程也是高考的热点与重点,若在客观题中出现通常用定义法,若在解答题中出现一般用直接法、代入法、参数法或待定系数法,往往出现在解答题的第(1)问中.1.直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系的判定方法:将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ0,则直线与椭圆相离.(2)直线与双曲线的位置关系的判定方法:将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①若a≠0,当Δ0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ0时,直线与双曲线相离.②若a=0时,直线与渐近线平行,与双曲线有一个交点.(3)直线与抛物线的位置关系的判定方法:将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①当a≠0时,用Δ判定,方法同上.②当a=0时,直线与抛物线的对称轴平行,只有一个交点.2.有关弦长问题有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=1+k2|x2-x1|或|P1P2|=1+1k2|y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用根与系数的关系,即作如下变形:|x2-x1|=x1+x22-4x1x2,|y2-y1|=y1+y22-4y1y2.(2)当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式).3.弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.考点一圆锥曲线的弦长及中点问题例1已知椭圆G:x2a2+y2b2=1(ab0)的离心率为63,右焦点(22,0),斜率为1的直线l与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为P(-3,2).(1)求椭圆G的方程;(2)求△PAB的面积.解(1)由已知得c=22,ca=63.解得a=23,又b2=a2-c2=4.所以椭圆G的方程为x212+y24=1.(2)设直线l的方程为y=x+m.由y=x+m,x212+y24=1.得4x2+6mx+3m2-12=0.①设A,B的坐标分别为(x1,y1),(x2,y2)(x1x2),AB中点为E(x0,y0),则x0=x1+x22=-3m4,y0=x0+m=m4;因为AB是等腰△PAB的底边,所以PE⊥AB.所以PE的斜率k=2-m4-3+3m4=-1.解得m=2.此时方程①为4x2+12x=0.解得x1=-3,x2=0.所以y1=-1,y2=2.所以|AB|=32.此时,点P(-3,2)到直线AB:x-y+2=0的距离d=|-3-2+2|2=322,所以△PAB的面积S=12|AB|·d=92.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.椭圆x22+y2=1的弦被点12,12平分,则这条弦所在的直线方程是____________.答案2x+4y-3=0解析设弦的两个端点为A(x1,y1),B(x2,y2),则x1+x2=1,y1+y2=1.∵A,B在椭圆上,∴x212+y21=1,x222+y22=1.x1+x2x1-x22+(y1+y2)(y1-y2)=0,即y1-y2x1-x2=-x1+x22y1+y2=-12,即直线AB的斜率为-12.∴直线AB的方程为y-12=-12x-12,即2x+4y-3=0.考点二圆锥曲线中的定值、定点问题例2已知椭圆C:x2a2+y2b2=1经过点(0,3),离心率为12,直线l经过椭圆C的右焦点F交椭圆于A、B两点,点A、F、B在直线x=4上的射影依次为D、K、E.(1)求椭圆C的方程;(2)若直线l交y轴于点M,且MA→=λAF→,MB→=μBF→,当直线l的倾斜角变化时,探求λ+μ的值是否为定值?若是,求出λ+μ的值;否则,说明理由;(3)连接AE、BD,试探索当直线l的倾斜角变化时,直线AE与BD是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.(1)待定系数法;(2)用直线的斜率为参数建立直线方程,代入椭圆方程消y后可得点A,B的横坐标的关系式,然后根据向量关系式MA→=λAF→,MB→=μBF→把λ,μ用点A,B的横坐标表示出来,只要证明λ+μ的值与直线的斜率k无关即证明了其为定值,否则就不是定值;(3)先根据直线l的斜率不存在时的特殊情况,看两条直线AE,BD的交点坐标,如果直线AE,BD相交于定点的话,这个特殊位置时的交点就是这个定点,这样只要证明直线AE,BD都经过这个定点即证明了两直线相交于定点,否则两直线就不相交于定点.解(1)依题意得b=3,e=ca=12,a2=b2+c2,∴a=2,c=1,∴椭圆C的方程为x24+y23=1.(2)因直线l与y轴相交,故斜率存在,设直线l方程为y=k(x-1),求得l与y轴交于M(0,-k),又F坐标为(1,0),设l交椭圆于A(x1,y1),B(x2,y2),由y=kx-1,x24+y23=1,消去y得(3+4k2)x2-8k2x+4k2-12=0,∴x1+x2=8k23+4k2,x1x2=4k2-123+4k2,又由MA→=λAF→,∴(x1,y1+k)=λ(1-x1,-y1),∴λ=x11-x1,同理μ=x21-x2,∴λ+μ=x11-x1+x21-x2=x1+x2-2x1x21-x1+x2+x1x2=8k23+4k2-24k2-123+4k21-8k23+4k2+4k2-123+4k2=-83.所以当直线l的倾斜角变化时,直线λ+μ的值为定值-83.(3)当直线l斜率不存在时,直线l⊥x轴,则ABED为矩形,由对称性知,AE与BD相交于FK的中点N52,0,猜想,当直线l的倾斜角变化时,AE与BD相交于定点N52,0,证明:由(2)知A(x1,y1),B(x2,y2),∴D(4,y1),E(4,y2),当直线l的倾斜角变化时,首先证直线AE过定点52,0,∵lAE:y-y2=y2-y14-x1(x-4),当x=52时,y=y2+y2-y14-x1·-32=24-x1·y2-3y2-y124-x1=24-x1·kx2-1-3kx2-x124-x1=-8k-2kx1x2+5kx1+x224-x1=-8k3+4k2-2k4k2-12+5k·8k224-x1·3+4k2=0.∴点N52,0在直线lAE上.同理可证,点N52,0也在直线lBD上.∴当直线l的倾斜角变化时,直线AE与BD相交于定点52,0.(1)定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.(2)由直线方程确定定点,若得到了直线方程的点斜式:y-y0=k(x-x0),则直线必过定点(x0,y0);若得到了直线方程的斜截式:y=kx+m,则直线必过定点(0,m).(2013·陕西)已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.(1)求动圆圆心的轨迹C的方程;(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明:直线l过定点.(1)解如图,设动圆圆心为O1(x,y),由题意,得|O1A|=|O1M|,当O1不在y轴上时,过O1作O1H⊥MN交MN于H,则H是MN的中点,∴|O1M|=x2+42,又|O1A|=x-42+y2,∴x-42+y2=x2+42,化简得y2=8x(x≠0).又当O1在y轴上时,O1与O重合,点O1的坐标为(0,0)也满足方程y2=8x,∴动圆圆心的轨迹C的方程为y2=8x.(2)证明由题意,设直线l的方程为y=kx+b(k≠0),P(x1,y1),Q(x2,y2),将y=kx+b代入y2=8x中,得k2x2+(2bk-8)x+b2=0.其中Δ=-32kb+640.由根与系数的关系得,x1+x2=8-2bkk2,①x1x2=b2k2,②因为x轴是∠PBQ的角平分线,所以y1x1+1=-y2x2+1,即y1(x2+1)+y2(x1+1)=0,(kx1+b)(x2+1)+(kx2+b)(x1+1)=0,2kx1x2+(b+k)(x1+x2)+2b=0③将①,②代入③得2kb2+(k+b)(8-2bk)+2k2b=0,∴k=-b,此时Δ0,∴直线l的方程为y=k(x-1),即直线l过定点(1,0).考点三圆锥曲线中的最值范围问题例3(2013·浙江)如图,点P(0,-1)是椭圆C1:x2a2+y2b2=1(ab0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积取最大值时直线l1的方程.解(1)由题意得b=1,a=2.所以椭圆C1的方程为x24+y2=1.(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意知直线l1的斜率存在,不妨设其为k,则直线l1的方程为y=kx-1.又圆C2:x2+y2=4,故点O到直线l1的距离d=1k2+1,所以|AB|=24-d2=24k2+3k2+1.又l2⊥l1,故直线l2的方程为x+ky+k=0.由x+ky+k=0,x2+4y2=4.消去y,整理得(4+k2)x2+8kx=0,故x0=-8k4+k2.所以|PD|=8k2+14+k2.设△ABD的面积为S,则S=12·|AB|·|PD|=84k2+34+k2,所以S=324k2+3+134k2+3≤3224k2+3·134k2+3=161313,当且仅当k=±102时取等号.所以所求直线l1的方程为y=±102x-1.求最值及参数范围的方法有两种:①根据题目给出的已知条件列出一个关于参数的函数关系式,将其代入由题目列出的不等式(即为消元),然后求解不等式;②由题目条件和结论建立目标函数,进而转化为求函数的值域.已知椭圆C1与抛物线C2的焦点均在x轴上且C1的中心和C2的顶点均为坐标原点O,从每条曲线上的各取两个点,其坐标如下表所示:x1-643y-30-61(1)求C1,C2的标准方程;(2)过点A(m,0)作倾斜角为π6的直线l交椭圆C1于C,D两点,且椭圆C1的左焦点F在以线段CD为直径的圆的外部,求m的取值范围.解(1)先判断出(-6,0)在椭圆上,进而断定点(1,-3)和(4,-6)在抛物线上,故(3,1)在椭圆上,所以椭圆C1的方程为x26+y22=1,抛物线C2的方程为y2=9x.(2)设C(x1,y1),D(x2,y2),直线l的方程为y=33(x-m),由y=33x-mx26+y22=1,消去y整理得2x2-2mx+m2-6=0,由Δ0得Δ=4m2-8(m2-6)0,即-23m23,①而x1x2=m2-62,x1+x2=m,故y1y2=33(x1-m)·33(x2-m)=13[x1x2-m(x1+x2)+m2]=m2-66.欲使左焦点F在以线段CD为直径的圆的外部,则FC→·FD→0,又F(-2,0),即FC→·FD→=(x1+2,y1)·(x2+2,y2)=x1x2+2(x1+x2)+y1y2+
本文标题:圆锥曲线中的热点问题(总结的非常好).
链接地址:https://www.777doc.com/doc-4349360 .html